MySQL Connector/Python Developer Guide

Abstract

This manual describes how to install and configure MySQL Connector/Python, a self-contained Python driver for
communicating with MySQL servers, and how to use it to develop database applications.

The latest MySQL Connector/Python version is recommended for use with MySQL Server version 8.0 and higher.

For notes detailing the changes in each release of Connector/Python, see MySQL Connector/Python Release
Notes.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Licensing information. This product may include third-party software, used under license. If you are using a
Commercial release of MySQL Connector/Python, see the MySQL Connector/Python 9.6 Commercial License
Information User Manual for licensing information, including licensing information relating to third-party software
that may be included in this Commercial release. If you are using a Community release of MySQL Connector/
Python, see the MySQL Connector/Python 9.6 Community License Information User Manual for licensing
information, including licensing information relating to third-party software that may be included in this Community
release.

Document generated on: 2026-01-13 (revision: 84232)

https://dev.mysql.com/doc/relnotes/connector-python/en/
https://dev.mysql.com/doc/relnotes/connector-python/en/
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/connector-python-9.6-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-python-9.6-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-python-9.6-gpl-en.pdf

Table of Contents

Preface and Legal NOUICESccouuuiiiiiiie ettt e e et ettt e e e e e e e eebanaaeees vii
1 Introduction to MySQL ConNeCtOr/PYINONoiiiiiiiiiii et 1
2 Guidelines for PYthOn DEVEIOPEISuiiiiiiiiieeeiit ettt et ettt e et e e e et e 3
3 CoNNECIOIPYINON VEISIONS ...ttt ettt e e et e et e e e et e e eena e eeens 5
4 Connector/Python INSTAIALIONuiiiiiie et e eeaes 7
4.1 Quick INStAllatioN GUIAEuiiiiiiii e e e e e e e e 7

4.2 Differences Between Binary And Source Distributionscccoooiiiiiiiiiiiii e, 7

4.3 Obtaining ConNECLONPYINONuuiiiii et 8

4.4 Installing Connector/Python from a Binary DiStributionccccooveiiiiiiiiiiinc e, 8
4.4.1 Installing Connector/Python With Pip ..o, 8

4.4.2 InStalling DY RPIMS ... 9

4.5 Installing Connector/Python from a Source Distributioncccooviiiiiniiiiiiinecieeee, 10

4.6 Verifying Your Connector/Python INStallationoooeviiiiiiiiinici e 12

5 Connector/Python Coding EXAmMPIEScoooiiiiii e 13
5.1 Connecting to MySQL Using Connector/PYtNONcccouuiiiiiiiiiieiiiiieeeei e 13

5.2 Creating Tables Using ConNeCtOr/PYINONcoouuuiiiiiiiiiii e 15

5.3 Inserting Data Using Connector/PYthOnooooiiiiiiiii e 18

5.4 Querying Data Using ConNeCtor/PYtNONccouuuiiiiiiiiieiiii e 19

6 ConNNECTOr/PYINON TULOMIAISciieei et e eeaes 21
6.1 Tutorial: Raise Employee's Salary Using a Buffered CUursorccccooveviivinieiiiineeiininen. 21

7 Connector/Python Connection EstabliShmentccooiiiiiii e 23
7.1 Connector/Python ConNection AFQUIMENEScieeuuuieiiiiieeeeiieee et eeeeti e e eeri e eeeniaeeeens 23

7.2 Connector/Python Option-File SUPPOITc.ouuiiiiii e 31

8 The Connector/PYthon C EXIENSIONuiiiiiiieiiiii ettt ettt ettt eeaa e e eeanns 35
8.1 Application Development with the Connector/Python C EXtensionccccceevevevinieeennnn. 35

8.2 The _mysql_connector C EXtension MOAUIEc.uuiiiiiiiiiiiiiiiieeeei e 36

9 ConNECtOr/PYthON Other TOPICS .. cvvriieiiitii ettt ettt e et e e e et eeeeaeaeeees 37
9.1 ConNECtOr/PYtNON LOGGING ...cvvtuiiiiiieeeiit ettt e et e et e e e 37

9.2 TelEMELIY SUPPOIT ... ettt ettt ettt ettt ettt e e et et e et e et e e e et e e eenbnnaeees 37

9.3 Executing MUltiple STAtEMENTSuuiiiiii e 40

9.4 ASYNCHroNOUS CONNECHIVILYiiiiiiieiiiii ettt et e et e e e ene e eees 43

9.5 Connector/Python ConnNection POOIINGcoiuiiiiiiii e 53

9.6 Connector/Python Django Back ENdccouuiiiiiiiiiiiiiiiie e 54

10 Connector/PYthon APl REFEIENCEciiiiii e 57
10.1 mysqgl.cONNECIOr MOTUIE ...t et e e e eees 59
10.1.1 mysql.connector.connect() Methodoviiiiiiiiiiiii e 59

10.1.2 mysql.connector.apileVel PrOPEITYv i 59

10.1.3 mysql.connector.paramstyle PrOPEItYovviiiiiiiiiiiiiieeiie e 60

10.1.4 mysql.connector.threadsafety Propertyccoocoiiieiiiiiiieiiiiee e 60

10.1.5 mysqgl.connector._ VErsion__ PrOPEILYcoouiiiiiiiii e 60

10.1.6 mysql.connector.__version_info__ Propertycccoooeiiiieiiiinneeieece e 60

10.2 connection.MySQLCONNECHON ClASScccuvuiiiiiiiiieiiiii e 60
10.2.1 connection.MySQLConnection() CONSIIUCIONoveieuuiiieiiiiieeiiiie e 60

10.2.2 MySQLConnection.close() Methodccouuiiiiiiiiiiiii e 60

10.2.3 MySQLConnection.commit() Methodoviiiiiiiiiiiiii e 61

10.2.4 MySQLConnection.config() Methodooiiiiiiiiiii e 61

10.2.5 MySQLConnection.connect() Methodc.cooiiiiiiiiiiiiiiii e 61

10.2.6 MySQLConnection.cursor() Methodovieiiiiiiiiiiiie e 62

10.2.7 MySQLConnection.cmd_change_user() Methodccccoiiiiiiiiiiniiiiiiince, 62

10.2.8 MySQLConnection.cmd_debug() Methodcoooiiiiiiiiiiiii e 63

10.2.9 MySQLConnection.cmd_init_db() Methodccooeiiiiiiii e, 63

10.2.10 MySQLConnection.cmd_ping() Methodcooviiiiiiiiiiii e 63

10.2.11 MySQLConnection.cmd_process_info() Methodccooeeviiiiiiiiiiniiiiiieceen, 63

10.2.12 MySQLConnection.cmd_process_Kill() Methodccooiiiiiiiiiiiiiiiii, 63

10.2.13 MySQLConnection.cmd_query() Methodoooiiiiiiiiiiii e 63

MySQL Connector/Python Developer Guide

10.2.14 MySQLConnection.cmd_query_iter() Methodcccooiiiiiiiiii 64
10.2.15 MySQLConnection.cmd_quit() Methodccooiiiiiiii 64
10.2.16 MySQLConnection.cmd_refresh() Methodcocoieiiiiiii e, 64
10.2.17 MySQLConnection.cmd_reset_connection() Methodc..ccoeveiiiiiiiiieiineeenn. 65
10.2.18 MySQLConnection.cmd_shutdown() Methodcccccoiviiiiiiiii i, 65
10.2.19 MySQLConnection.cmd_statistics() Methodccooeviiiiiiiiii e, 65
10.2.20 MySQLConnection.disconnect() Methodcoovviiiiiiiiiiii e 65
10.2.21 MySQLConnection.get row() Methodcooiiiiiiiiiii e, 65
10.2.22 MySQLConnection.get_rows() Methodccoooiiiiiii i, 65
10.2.23 MySQLConnection.get_server_info() Methodcccoooiiiiiiiiiii 66
10.2.24 MySQLConnection.get_server_version() Methodcc..coeviiiiiiin e, 66
10.2.25 MySQLConnection.is_connected() Methodcccoevviiiiiiiiii e 66
10.2.26 MySQLConnection.isset_client_flag() Methodccocoiiiiiiiiiiiiii e, 66
10.2.27 MySQLConnection.ping() Methodcooiiiiiiiiii e 66
10.2.28 MySQLConnection.reconnect() Methodcccoeviiiiiiiiiii e 67
10.2.29 MySQLConnection.reset_session() Methodccccoeoiiiiiiiiiii i, 67
10.2.30 MySQLConnection.rollback() Methodoiviiiiiiie e, 67
10.2.31 MySQLConnection.set_charset_collation() Methodc.ccoieiiiiiiiiiiiiin e, 67
10.2.32 MySQLConnection.set_client_flags() Methodccoooiiiiiiiii i 68
10.2.33 MySQLConnection.shutdown() Methodccoovviiiiiiiiiii e 68
10.2.34 MySQLConnection.start_transaction() Methodc.cccocoviiiiiiiiicii e, 68
10.2.35 MySQLConnection.autocommit Propertyccccoviviiiieiiii i 69
10.2.36 MySQLConnection.unread_results Propertycoovveuieeiiiieiiiieeiis e eeei e 69
10.2.37 MySQLConnection.can_consume_results Propertycccooevieveiiicviniieneeennnn, 69
10.2.38 MySQLConnection.charset Propertycoccuviiiiiiiiiiicie e 69
10.2.39 MySQLConnection.client_flags Propertycoovivuiiiiiiiiiii e e 69
10.2.40 MySQLConnection.collation Propertycc.oeeviiiiiiiiieii e eae e 70
10.2.41 MySQLConnection.connected Propertycocoueeviiiiiiiiieiii e ee e e e e 70
10.2.42 MySQLConnection.connection_id Propertyccoceueveeiieeiiiieeeiieein e eeaaeeaenn 70
10.2.43 MySQLConnection.converter-class Propertyoococovviiieiiii e, 70
10.2.44 MySQLConnection.database Propertycccooveiiiiiiiiicii e 70
10.2.45 MySQLConnection.get_ warnings ProPErtYccccveveiiieiiiieiiiieeiieeeiee e e e 71
10.2.46 MySQLConnection.in_transaction PrOPErtYcccveiuiieiiieiiiiieiie e e e 71
10.2.47 MySQLConnection.raise_on_warnings Propertycccoeeviiieiiiieiiiievin e, 71
10.2.48 MySQLConnection.server_host Propertyccoveuiieiiiieiiiieiiiieeeeee e e e 72
10.2.49 MySQLConnection.server_info Propertycoocvuiiieiiieiiiieiie e e eee e 72
10.2.50 MySQLConnection.server_port PrOPertycvvvuieeiieeiiieeeie e 72
10.2.51 MySQLConnection.server_Version Propertyccoocviviviieeeiiiieiieeeeeee e 72
10.2.52 MySQLConnection.sgl_mode Propertycceeeiiiieiiiieiiie e eeeee e e e 72
10.2.53 MySQLConnection.time_zone PrOPErItYccceuuieiiiiiiii e e eae e 72
10.2.54 MySQLConnection.use_unicode Propertycoeveviiieeiieeiiiieeiiee e e 72
10.2.55 MySQLConnection.unix_SocKet PrOPEIYcccvuuiiiiiiieiieeii e 73
10.2.56 MySQLCONNECtION.USEr PrOPEITY ..vueiiiiiii et 73
10.3 pooling.MySQLCoNNECHONPOOI ClaSScc.uiiiiiiiiii i 73
10.3.1 pooling.MySQLConnectionPO0l CONSLIUCIONuviiinieiiieiii e e e e 73
10.3.2 MySQLConnectionPool.add_connection() Methodcocoiviiiiiiiiin e, 74
10.3.3 MySQLConnectionPool.get_connection() Methodcccocoiiiiiii i, 74
10.3.4 MySQLConnectionPool.set_config() Methodcccooiiiiiiiiiiii e 74
10.3.5 MySQLConnectionPool.pool_name Propertyccooeeveiiieiiiieiie e 74
10.4 pooling.PooledMySQLCONNECHON CIASS ...cc.uuiiiieiiiiieii e e e e e 75
10.4.1 pooling.PooledMySQLConnection CONSIIUCIONcvevviieiinieiiiieeiii e 75
10.4.2 PooledMySQLConnection.close() Methodcccciiiiiiiiiii e 75
10.4.3 PooledMySQLConnection.config() Methodccooeviiiiiiiiiiii e, 75
10.4.4 PooledMySQLConnection.pool_name Propertycccoceueeeeiiieeiineeiiieeeieeeieeennnns 75
10.5 cUrsor.MySQLECUISON CIASS ...uucvuuiiiiiieiiiieiii e e et et e e e e e e e e e e e e e et e e e e eanaas 76
10.5.1 cursor.MySQLCUIrSOr CONSLIUCTOLvuuiieieeeiiee e e e e e e e e e eaeenns 76
10.5.2 MySQLCursor.add_attribute() Methodccooviiiiiiii e, 77

10.5.3 MySQLCursor.clear_attributes() Methodcooiiiiiiiiii e, 77

MySQL Connector/Python Developer Guide

10.5.4 MySQLCursor.get_attributes() Methodcooviiiiiiiie e, 78
10.5.5 MySQLCursor.callproc() Methodcccooiiiiiiii e 78
10.5.6 MySQLCursor.close() Methodcccouuiiiiiiiiiiiic e 78
10.5.7 MySQLCursor.execute() Methodc.couiiiiiiiiiii e 79
10.5.8 MySQLCursor.executemany() Methodcoovviiiiiiiiii e, 79
10.5.9 MySQLCursor.fetchall() Methodc.coiiiiiiii e 80
10.5.10 MySQLCursor.fetchmany() Methodcoooiiiiiiiiii e, 80
10.5.11 MySQLCursor.fetchone() Methodcccooiiiiiiii e, 80
10.5.12 MySQLCursor.nextset() Methodc.oiiiiiiiiii e 81
10.5.13 MySQLCursor.fetchsets() Methodooiiiiiiiii i 81
10.5.14 MySQLCursor.fetchwarnings() Methodccoooiiiiiiiiiiin e, 82
10.5.15 MySQLCursor.stored_results() Methodcoiviiiiiiiin i, 82
10.5.16 MySQLCursor.column_Names PrOPEILYcccuuieiuiieeiiiieiiieeiiiieeie e e e e e eaneeeans 82
10.5.17 MySQLCursor.description PrOPErtYcc.uieiiiieiii e eeie e e e e 83
10.5.18 MySQLCuUrsor.warnings Propertycooviiieiii e 83
10.5.19 MySQLCUrsOr.lastrowid PrOPEIYccouuieiiiiiiiieeiii e ee e e e e e eaae e 84
10.5.20 MySQLCUIsSOr.rOWCOUNE PTrOPEIYvvuiieeiiiiee e e e e e e e e e e e een 84
10.5.21 MySQLCursor.statement PrOPEITYo..veiiniiiiiie e e 84
10.5.22 MySQLCUrsor.wWith_rOWS PrOPEIYccuuuiiiiiieiiieeeiiee e e e e e e e e e aaneees 85

10.6 Subclasses CUrsor.MYSQLCUISONuciuieiiiieeie et e e e e e e e e e e et e e e e e e eannas 85
10.6.1 cursor.MySQLCursorBuffered Classcoceuuiiiiiiiiiiiiciiecce e 85
10.6.2 cursor.MySQLCUISOrRAW CIaSSc.uieiuiiiiiiiiiii e eaae e 86
10.6.3 cursor.MySQLCUISOIDICt ClaSScvvvuiiiiiiiiiiiiii et e e e 86
10.6.4 cursor.MySQLCursorBufferedDict Classccccuviiiiiiiiiiieiii e, 86
10.6.5 cursor.MySQLCuUrsorPrepared CIassSc.ccuuiieiiiieiiiieiie e e e 87

10.7 constants.ClentFlag Classc.uoiiiiiiiii i ea e 88
10.8 coNStantS. FIeldTYPE CIaSS ...ccuuuiiiiieiiieei e e e e e e e e e ea e ee 88
10.9 constants.SQLMOAE CIASSuciiunieiiiieii i e e e e e e e e eaas 89
10.10 constants.CharaCterSet ClaSsSviiiiiiiiiiiiii e 89
10.11 constants.RefreShOpPtioN CIaSsSiiiiiiiiiieii e 89
10.12 Errors and EXCEPLIONSccuuiiiiieiii et e e e e e e e e e e e et e e et e et e e et e e e 89
10.12.1 errorcode MOUUIEciiieii et e e e et e e eereaea e 90
10.12.2 errOrS.Error EXCEPLION ...ivui it e e e e e e 91
10.12.3 errors.DataError EXCEPLIONciuuuiiiie et eci et e e e e e aa e 92
10.12.4 errors.DatabaseError EXCEPLIONcccuuiiiiieiiii e 92
10.12.5 errors.IntegrityError EXCEPLIONcvvviii e e e e e 92
10.12.6 errors.InterfaceError EXCEPLIONcccvviiiiiiiiii e 92
10.12.7 errors.InternalError EXCEPLIONccvvuiiiiiiii e 92
10.12.8 errors.NotSupportedError EXCEPLIONccuuiiiiiiiiiieciii e 93
10.12.9 errors.OperationalError EXCEPLIONc.uieiuuieiiiiee e e e e e e e e 93
10.12.10 errors.POOIEITOr EXCEPLON ...ccuuiiiiciie e e e e 93
10.12.11 errors.ProgrammingError EXCEPLIONveviiiiiiiiiiiiieeii e e e e 93
10.12.12 errors.Warning EXCEPLIONcouuiiiii i e 93
10.12.13 errors.custom_error_exception() FUNCLONc..oveviiiiiiiiieiii e 93

11 Connector/Python C Extension APl RefErenCecccouiiiiiiiiiii i 95
11.1 _mysql_connector MOGUIEcouuiii et e e e eens 96
11.2 _mysqgl_connector.MySQL() Classccuoiiiiiiiiiieiii e e e e 96
11.3 _mysql_connector.MySQL.affected_rows() Methodccocoiiiiiiiiiiiiii e 96
11.4 _mysql_connector.MySQL.autocommit() Methodcoooviiiiiiiiiii e, 96
11.5 mysql_connector.MySQL.buffered() Methodooiiiiiiiiii e, 97
11.6 _mysql_connector.MySQL.change_user() Methodc.cociiiiiiiiiii i, 97
11.7 _mysql_connector.MySQL.character_set name() Methodcccoeeiiiiiiiiiine, 97
11.8 _mysql_connector.MySQL.close() Methodcc.veiiiiiiiiiiiiie e, 97
11.9 mysql_connector.MySQL.commit() Methodcooiiiii i, 97
11.10 _mysql_connector.MySQL.connect() Methodccoveiiiiiiiiiiii e, 97
11.11 _mysql_connector.MySQL.connected() Methodccoovviiiiiiiiiii e, 98
11.12 _mysql_connector.MySQL.consume_result() Methodcccccooeiiiiiiiiiii e 98
11.13 _mysql_connector.MySQL.convert to_mysqgl() Methodcccoooiiiiiiiiiii e, 98

MySQL Connector/Python Developer Guide

11.14 mysql_connector.MySQL.escape_string() Methodcccoeeeiiiiiiiciiin e, 98
11.15 mysql_connector.MySQL.fetch_fields() Methodc.ccoiiiiiiiiiii e 99
11.16 _mysql_connector.MySQL.fetch_row() Methodccccoeiiiiiiiiiiii e 99
11.17 _mysql_connector.MySQL.field_count() Methodcoiiiiiiiiiii e 99
11.18 mysql_connector.MySQL.free_result() Methodc.cooviiiiiiiiiiiiii e, 99
11.19 mysql_connector.MySQL.get character_set_info() Methodccooeeiiiiiiinnnnnnnn, 99
11.20 _mysql_connector.MySQL.get _client_info() Methodcccoiiiiiiiiin e 99
11.21 _mysql_connector.MySQL.get client_version() Methodcccovviiiiiiiiiiin e, 100
11.22 _mysql_connector.MySQL.get host_info() Methodccoooiiiiiiiii 100
11.23 _mysql_connector.MySQL.get_proto_info() Methodccoeviiiiiiiiiiiiee, 100
11.24 mysql_connector.MySQL.get_server_info() Methodccooeeiiiiiiiiiiiii e, 100
11.25 mysql_connector.MySQL.get _server_version() Methodcoccciiviiiiiiiiiiin e, 100
11.26 _mysql_connector.MySQL.get _ssl_cipher() Methodc.cccoiiiiiiiiinii e, 100
11.27 _mysql_connector.MySQL.hex_string() Methodccoooeiiiiiiiiii e 100
11.28 _mysql_connector.MySQL.insert_id() Methodcoieiiiiiiiiiii e 101
11.29 mysql_connector.MySQL.more_results() Methodcociiiiii i 101
11.30 _mysql_connector.MySQL.next_result() Methodcocoiiiiiiiiiin e 101
11.31 _mysql_connector.MySQL.num_fields() Methodccoooiiiiiiiiii e, 101
11.32 _mysql_connector.MySQL.num_rows() Methodcooeeiiiiiiiiiiiie e 101
11.33 _mysql_connector.MySQL.ping() Methodcooiiiiiiiiii e 101
11.34 _mysql_connector.MySQL.query() Methodccooiiiiiiii i 101
11.35 _mysql_connector.MySQL.raw() Methodcoieiiiiiiiiiiii e 102
11.36 _mysql_connector.MySQL.refresh() Methodcooeiiiiiiiiii e, 102
11.37 _mysql_connector.MySQL.reset_connection() Methodccooeiiiiiiiiinn, 102
11.38 _mysql_connector.MySQL.rollback() Methodcccocoiiiiiiiiiii e, 102
11.39 _mysql_connector.MySQL.select_db() Methodcoooiiiiiiii i 102
11.40 _mysql_connector.MySQL.set_character_set() Methodc.c.cocoiviiiiiii i, 103
11.41 _mysql_connector.MySQL.shutdown() Methodccoooiiiiiii i, 103
11.42 _mysql_connector.MySQL.stat() Methodcoviiiiiiiiiii e 103
11.43 _mysql_connector.MySQL.thread_id() Methodcoooviiiiiiiii e 103
11.44 mysql_connector.MySQL.use_unicode() Methodcooeviiiiiiiiii e 103
11.45 mysql_connector.MySQL.warning_count() Methodc.c.cciviiiiiiiii i 104
11.46 _mysql_connector.MySQL.have_result_set Propertyccccccoeeeviinieiiieeeinieiineeieeeeen, 104
.. 105

Vi

Preface and Legal Notices

This manual describes how to install, configure, and develop database applications using MySQL
Connector/Python, the Python driver for communicating with MySQL servers.

Legal Notices

Copyright © 2012, 2026, Oracle and/or its affiliates.
License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software,” "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed, or activated
on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in

the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services

are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC

Vii

Documentation Accessibility

International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible

for and expressly disclaim all warranties of any kind with respect to third-party content, products,

and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion

to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit ht t p: / / www. or acl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=tr s if you are hearing impaired.

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 Introduction to MySQL Connector/Python

MySQL Connector/Python enables Python programs to access MySQL databases, using an API that is
compliant with the Python Database API Specification v2.0 (PEP 249).

For notes detailing the changes in each release of Connector/Python, see MySQL Connector/Python
Release Notes.

MySQL Connector/Python includes support for:

Almost all features provided by MySQL Server version 8.0 and higher.

Connector/Python supports X DevAPI. For X DevAPI specific documentation, see X DevAPI| User
Guide.

Note

X DevAPI support was separated into its own package (nmysql x-
connect or - pyt hon) in Connector/Python 8.3.0. For related information,
see Chapter 4, Connector/Python Installation.

Converting parameter values back and forth between Python and MySQL data types, for example
Python dat et i me and MySQL DATETI ME. You can turn automatic conversion on for convenience,
or off for optimal performance.

All MySQL extensions to standard SQL syntax.

Protocol compression, which enables compressing the data stream between the client and server.
Connections using TCP/IP sockets and on Unix using Unix sockets.

Secure TCP/IP connections using SSL.

Self-contained driver. Connector/Python does not require the MySQL client library or any Python
modules outside the standard library.

For information about which versions of Python can be used with different versions of MySQL
Connector/Python, see Chapter 3, Connector/Python Versions.

Note

Connector/Python does not support the old MySQL Server authentication
methods, which means that MySQL versions prior to 4.1 will not work.

http://www.python.org/dev/peps/pep-0249/
https://dev.mysql.com/doc/relnotes/connector-python/en/
https://dev.mysql.com/doc/relnotes/connector-python/en/
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/x-devapi-userguide/en/

Chapter 2 Guidelines for Python Developers

The following guidelines cover aspects of developing MySQL applications that might not be
immediately obvious to developers coming from a Python background:

» For security, do not hardcode the values needed to connect and log into the database in your
main script. Python has the convention of a conf i g. py module, where you can keep such values
separate from the rest of your code.

» Python scripts often build up and tear down large data structures in memory, up to the limits of
available RAM. Because MySQL often deals with data sets that are many times larger than available
memory, techniques that optimize storage space and disk I/O are especially important. For example,
in MySQL tables, you typically use numeric IDs rather than string-based dictionary keys, so that the
key values are compact and have a predictable length. This is especially important for columns that
make up the primary key for an | nnoDB table, because those column values are duplicated within
each secondary index.

» Any application that accepts input must expect to handle bad data.

The bad data might be accidental, such as out-of-range values or misformatted strings. The
application can use server-side checks such as unique constraints and NOT NULL constraints, to
keep the bad data from ever reaching the database. On the client side, use techniques such as
exception handlers to report any problems and take corrective action.

The bad data might also be deliberate, representing an “SQL injection” attack. For example, input
values might contain quotation marks, semicolons, %and _ wildcard characters and other characters
significant in SQL statements. Validate input values to make sure they have only the expected
characters. Escape any special characters that could change the intended behavior when substituted
into an SQL statement. Never concatenate a user input value into an SQL statement without doing
validation and escaping first. Even when accepting input generated by some other program, expect
that the other program could also have been compromised and be sending you incorrect or malicious
data.

» Because the result sets from SQL queries can be very large, use the appropriate method to retrieve
items from the result set as you loop through them. fetchone() retrieves a single item, when you
know the result set contains a single row. fetchall() retrieves all the items, when you know the
result set contains a limited number of rows that can fit comfortably into memory. fetchmany() is the
general-purpose method when you cannot predict the size of the result set: you keep calling it and
looping through the returned items, until there are no more results to process.

» Since Python already has convenient modules such as pi ckl e and cPi ckl e to read and write
data structures on disk, data that you choose to store in MySQL instead is likely to have special
characteristics:

e Too large to all fit in memory at one time. You use SELECT statements to query only the precise
items you need, and aggregate functions to perform calculations across multiple items. You
configure the i nnodb_buf f er _pool _si ze option within the MySQL server to dedicate a certain
amount of RAM for caching table and index data.

* Too complex to be represented by a single data structure. You divide the data between
different SQL tables. You can recombine data from multiple tables by using a join query. You
make sure that related data is kept in sync between different tables by setting up foreign key
relationships.

* Updated frequently, perhaps by multiple users simultaneously. The updates might only affect
a small portion of the data, making it wasteful to write the whole structure each time. You use the
SQL | NSERT, UPDATE, and DELETE statements to update different items concurrently, writing only
the changed values to disk. You use | nnoDB tables and transactions to keep write operations from
conflicting with each other, and to return consistent query results even as the underlying data is
being updated.

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_secondary_index
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_unique_constraint
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_not_null_constraint
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_buffer_pool_size
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_join
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_foreign_key
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_transaction

» Using MySQL best practices for performance can help your application to scale without requiring
major rewrites and architectural changes. See Optimization for best practices for MySQL
performance. It offers guidelines and tips for SQL tuning, database design, and server configuration.

» You can avoid reinventing the wheel by learning the MySQL SQL statements for common
operations: operators to use in queries, techniques for bulk loading data, and so on. Some
statements and clauses are extensions to the basic ones defined by the SQL standard. See Data
Manipulation Statements, Data Definition Statements, and SELECT Statement for the main classes
of statements.

* Issuing SQL statements from Python typically involves declaring very long, possibly multi-line string
literals. Because string literals within the SQL statements could be enclosed by single quotation,
double quotation marks, or contain either of those characters, for simplicity you can use Python's
triple-quoting mechanism to enclose the entire statement. For example:

'""'It doesn't matter if this string contains 'single'
or "doubl e" quotes, as long as there aren't 3 in a
row. ' "’

You can use either of the ' or " characters for triple-quoting multi-line string literals.

» Many of the secrets to a fast, scalable MySQL application involve using the right syntax at the very
start of your setup procedure, in the CREATE TABLE statements. For example, Oracle recommends
the ENG NE=I NNODB clause for most tables, and makes | nnoDB the default storage engine in
MySQL 5.5 and up. Using | nnoDB tables enables transactional behavior that helps scalability of
read-write workloads and offers automatic crash recovery. Another recommendation is to declare
a numeric primary key for each table, which offers the fastest way to look up values and can act
as a pointer to associated values in other tables (a foreign key). Also within the CREATE TABLE
statement, using the most compact column data types that meet your application requirements helps
performance and scalability because that enables the database server to move less data back and
forth between memory and disk.

https://dev.mysql.com/doc/refman/8.0/en/optimization.html
https://dev.mysql.com/doc/refman/8.0/en/sql-data-manipulation-statements.html
https://dev.mysql.com/doc/refman/8.0/en/sql-data-manipulation-statements.html
https://dev.mysql.com/doc/refman/8.0/en/sql-data-definition-statements.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_crash_recovery
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_foreign_key
https://dev.mysql.com/doc/refman/8.0/en/create-table.html

Chapter 3 Connector/Python Versions

This section describes both version releases, such as 8.0.34, along with notes specific to the two
implementations (C Extension and Pure Python).

Connector/Python Releases

The following table summarizes the available Connector/Python versions. For series that have reached
General Availability (GA) status, development releases in the series prior to the GA version are no
longer supported.

Note

MySQL Connectors and other MySQL client tools and applications now
synchronize the first digit of their version number with the (highest) MySQL
server version they support. For example, MySQL Connector/Python 8.0.12
would be designed to support all features of MySQL server version 8 (or lower).
This change makes it easy and intuitive to decide which client version to use for
which server version.

Connector/Python 8.0.4 is the first release to use the new numbering. It is the

successor to Connector/Python 2.2.3.

Table 3.1 Connector/Python Version Reference

Connector/Python |MySQL Server Python Versions |Connector Status
Version Versions
9.5.0 and later 8.0 and later 3.14, 3.13*, 3.12, |General Availability
3.11, 3.10
9.10-9.4.0 8.0 and later 3.13% 3.12, 3.11, |General Availability
3.10, 3.9
8.4.0 and 9.0.0 8.0 and later 3.12, 3.11, 3.10, General Availability
39,38
8.1.0-8.3.0 5.7 and later 3.12 (8.2.0+), 3.11, |General Availability
3.10,3.9,3.8
8.0 8.0,5.7,5.6,5.5 3.11, 3.10, 3.9, 3.8, | General Availability
3.7, (3.6 before
8.0.29), (2.7 and
3.5 before 8.0.24)
2.2 (continues as |5.7,5.6,5.5 3.5,34,27 Developer
8.0) Milestone, No
releases
2.1 5.7,5.6,5.5 35,34,27,2.6 General Availability
2.0 5.7,5.6,55 35,34,27,26 GA, final release
on 2016-10-26
1.2 5.7,5.6,55 (5.1, |3.4,33,3.2,3.1, |GA, final release
5.0, 4.1) 2.7,2.6 on 2014-08-22

Note

MySQL server and Python versions within parentheses are known to work with
Connector/Python, but are not officially supported. Bugs might not get fixed for
those versions.

Connector/Python Implementations

Note

Python 3.13 enables ssl . VERI FY_X509_ STRI CT SSL validation by default,
which means SSL certificates must now be RFC-5280 compliant when using
Python 3.13 and higher.

Note

On macOS x86_64 ARM: Python 3.7 is not supported with the c-ext
implementation; note this is a non-default version of Python on macOS.

Connector/Python Implementations

Connector/Python implements the MySQL client/server protocol two ways:
 As pure Python; an implementation written in Python. It depends on the Python Standard Library.
The X DevAPI variant of the connector requires Python Protobuf. The required version is 5.29.4.

» As a C Extension that interfaces with the MySQL C client library. This implementation of the protocol
is dependent on the client library, but can use the library provided by MySQL Server packages (see
MySQL C API Implementations).

Neither implementation of the client/server protocol has any third-party dependencies. However, if you
need SSL support, verify that your Python installation has been compiled using the OpenSSL libraries.

Note
Support for distutils was removed in Connector/Python 8.0.32.
Python terminology regarding distributions:

» Built Distribution: A package created in the native packaging format intended for a given platform. It
contains both sources and platform-independent bytecode. Connector/Python binary distributions are
built distributions.

» Source Distribution: A distribution that contains only source files and is generally platform
independent.

https://dev.mysql.com/doc/c-api/8.0/en/c-api-implementations.html
http://www.openssl.org/

Chapter 4 Connector/Python Installation

Table of Contents

4.1 QUICK INSTAllAtION GUIAEceeeiieeie e e e e et e e et e e et e e e eeeans 7
4.2 Differences Between Binary And Source Distributionscccooiiiiiiiii 7
4.3 Obtaining CONNECIONPYINONc..uiiiiiiii et e e e ne s 8
4.4 Installing Connector/Python from a Binary DiStribUtioncc.coiiiiiiiiiiiiiii e 8

4.4.1 Installing Connector/Python With Pipviiiiiiii e 8

4.4.2 InStalling DY RPMS ..ot et 9
4.5 Installing Connector/Python from a Source DiStributioncoooeiiiiiiiiiiiic e, 10
4.6 Verifying Your Connector/Python INStallationocooiuiiiiiiiii e 12

Connector/Python runs on any platform where Python is installed. Make sure Python is installed on
your platform:

» Python comes preinstalled on most Unix and Unix-like systems, such as Linux, macOS, and
FreeBSD. If your system does not have Python preinstalled for some reasons, use its software
management system to install it.

» For Microsoft Windows, a Python installer is available at the Python Download website or via the
Microsoft Store.

Also make sure Python in your system path.

Connector/Python includes the classic and X DevAPI APIs, which are installed separately. Each can be
installed by a binary or source distribution.

Binaries of Connector/Python are distributed in the RPM and the wheel package formats. The source
code, on the other hand, is distributed as a compressed archive of source files, from which a wheel
package can be built.

4.1 Quick Installation Guide

The recommended way to install Connector/Python is by pip and wheel packages. If your system does
not have pi p, you can install it with your system's software manager, or with a standalone pip installer.

Note

You are strongly recommended to use the latest version of pi p to install
Connector/Python. Upgrade your pi p version if needed.

Install the Connector/Python interfaces for the classic MySQL protocol and the X Protocol, respectively,
with the following commands.

classic API
$ pip install nysql-connector-python

X DevAP|
$ pip install mysqgl x- connect or - pyt hon

Refer to the installation tutorial for alternate means to install X DevAPI.

4.2 Differences Between Binary And Source Distributions

Installing from a wheel (bdi st package) is the recommended, except for Enterprise Linux systems, on
which the RPM-based installation method may be preferred.

http://python.org/download/
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/packaging_and_distributing_software/introduction-to-rpm_packaging-and-distributing-software
https://packaging.python.org/en/latest/discussions/package-formats/#what-is-a-wheel
https://pip.pypa.io/en/stable/
https://pip.pypa.io/en/latest/installation/
https://dev.mysql.com/doc/dev/connector-python/installation.html
https://packaging.python.org/en/latest/discussions/package-formats/#what-is-a-wheel

Obtaining Connector/Python

Wheels can be directly and easily installed without an extra build step. However, a wheel package is
often specific to a particular platform and Python version, so there may be cases in which pi p cannot
find a suitable wheel package based on your platform or your Python version. When that happens, you
can get the source distribution (sdi st) and produce a wheel package from it for installing Connector/
Python.

Note

Creating a wheel package from an sdi st may fail for some older Python
version, as the Connector/Python source code is only compatible with a specific
subset of Python versions.

In summary, the recommendation is to use a bdi st unless pi p cannot find a suitable wheel package
for your setup, or if you need to custom build a wheel package for some special reasons.

4.3 Obtaining Connector/Python

Using pi p is the preferred method to obtain, install, and upgrade Connector/Python. For alternatives,
see the Connector/Python download site.

Note

The mysql - connect or - pyt hon package installs an interface to the classic
MySQL protocol. The X DevAPI is available by its own nmysql x- connect or -
pyt hon package. Prior to Connector/Python 8.3.0, mysql - connect or -

pyt hon installed interfaces to both the X and classic protocols.

Most Linux installation packages (except RPMs for Enterprise Linux) are no longer available from
Oracle since Connector/Python 9.0.0. Using pi p to manage Connector/Python on those Linux
distributions is recommended.

4.4 Installing Connector/Python from a Binary Distribution

Connector/Python includes the classic and X DevAPI connector APIs, which are installed separately.
Each can be installed by a binary distribution.

Binaries are distributed in the RPM and the wheel package formats.

4.4.1 Installing Connector/Python with pip

Installation via pi p is supported on Windows, macOS, and Linux platforms.
Note

For macOS platforms, DMG installer packages were available for Connector/
Python 8.0 and earlier.

Use pi p to install and upgrade Connector/Python:

Installation
$> pip install nysqgl-connector-python

Upgr ade
$> pip install mysqgl-connector-python --upgrade

Optionally, install X DevAPI
$> pip install nysqgl x-connect or - pyt hon

Upgrade X DevAPI
$> pip install nysqgl x-connect or-python --upgrade

https://packaging.python.org/en/latest/discussions/package-formats/#what-is-a-source-distribution
https://dev.mysql.com/downloads/connector/python/
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/packaging_and_distributing_software/introduction-to-rpm_packaging-and-distributing-software
https://packaging.python.org/en/latest/discussions/package-formats/#what-is-a-wheel

Installing by RPMs

In case the wheel package you want to install is found in your local file system (for example, you
produced a wheel package from a source distribution or downloaded it from somewhere), you can
install it as follows:

Installation
$ pip install /path/to/wheel/<wheel package nane>.whl

Installation of Optional Features

Installation from wheels allow you to install optional dependencies to enable certain features with
Connector/Python. For example:

3rd party packages to enable the telenetry functionality are installed
$ pip install nysql-connector-python[tel emetry]

Similarly, for X DevAPI:

3rd party packages to enable the conpression functionality are installed
$ pip install nysqgl x-connect or - pyt hon[conpr essi on]

These installation options are shortcuts to install all the dependencies needed by some particular
features (they are only for your convenience, and you can always install the required dependencies for
a feature by yourself):

» For the classic protocol:
e dns-srv
e gssapi
« fido2
* telemetry
» For X Protocol:
e dns-srv
e compression

You can specify a multiple of these options in your installation command, for example:
$ pip install nysqgl-connector-python[tel enetry, dns-srv, ...]

Or, if are installing a wheel package from your local file system:

$ pip install /path/to/wheel/<wheel package nanme>. whl[tel enetry, dns-srv,...]

4.4.2 Installing by RPMs

Installation by RPMs is only supported on RedHat Enterprise Linux and Oracle Linux, and is performed
using the MySQL Yum Repository or by using RPM packages downloaded directly from Oracle.

4.4.2.1 Using the MySQL Yum Repository

RedHat Enterprise Linux and Oracle Linux platforms can install Connector/Python using the MySQL
Yum repository (see Adding the MySQL Yum Repository and Installing Additional MySQL Products and
Components with Yum).

Prerequisites

» Forinstalling X DevAPI only:Because the required pyt hon3- pr ot obuf RPM package is not
available for Python 3.8 on the RedHat Enterprise Linux and Oracle Linux platforms, it has to be

https://dev.mysql.com/doc/refman/8.0/en/linux-installation-yum-repo.html#yum-repo-setup
https://dev.mysql.com/doc/refman/8.0/en/linux-installation-yum-repo.html#yum-install-components
https://dev.mysql.com/doc/refman/8.0/en/linux-installation-yum-repo.html#yum-install-components

Installing Connector/Python from a Source Distribution

manually installed with, for example, pi p i nstal | protobuf. This is required for Connector/
Python 8.0.29 or later.

e The mysql - conmuni ty-cl i ent - pl ugi ns package is required for using robust authentication
methods like cachi ng_sha2_ passwor d, which is the default authentication method for MySQL 8.0
and later. Install it using the Yum repository

$ sudo yuminstall nysql-conmmunity-client-plugins
Installation
Use the following commands to install Connector/Python:
$ sudo yuminstall nysqgl-connector-python

Optionally, install also X DevAPI
$ sudo yuminstall nysql x-connect or - pyt hon

4.4.2.2 Using an RPM Package
Connector/Python RPM packages (. r pmfiles) are available from the Connector/Python download site.

You can verify the integrity and authenticity of the RPM packages before installing them. To learn
more, see Verifying Package Integrity Using MD5 Checksums or GnuPG.

Prerequisites

» Forinstalling X DevAPI only:Because the required pyt hon3- pr ot obuf RPM package is not
available for Python 3.8 on the RedHat Enterprise Linux and Oracle Linux platforms, it has to be
manually installed with, for example, pi p i nstal | pr ot obuf. This is required for Connector/
Python 8.0.29 or later.

e The nysqgl - conmuni ty-cl i ent - pl ugi ns package is required for using robust authentication
methods like cachi ng_sha2_ passwor d, which is the default authentication method for MySQL 8.0
and later.

$ rpm-i nysql -communi ty-client-plugins-ver.distro.architecture.rpm
Installation

To install Connector/Python using the downloaded RPM packages:
$ rpm-i nysql -connect or - pyt hon-ver. di stro.architecture.rpm

Optionally, install X DevAPI
$ rpm-i nysql x- connect or - pyt hon-ver. di stro. architecture.rpm

4.5 Installing Connector/Python from a Source Distribution

The Connector/Python source distribution is platform independent, and is packaged in the compressed
t ar archive format (. t ar . gz file). See Obtaining Connector/Python) on how to download them.

Prerequisites for Compiling Connector/Python with the C Extension

Source distributions include the C Extension that interfaces with the MySQL C client library. You can
build the distribution with or without support for this extension. To build Connector/Python with support
for the C Extension, the following prerequisites must be satisfied:

» Compiling tools:
e For Linux platforms: A C/C++ compiler, such as gcc.

» For Windows platforms: Current version of Visual Studio.

10

https://dev.mysql.com/downloads/connector/python/
https://dev.mysql.com/doc/refman/8.4/en/verifying-package-integrity.html

Installing Connector/Python from Source Code Using pi p

» Python development files.

» For installing the classic interface only: MySQL Server binaries (server may be installed or not
installed on the system), including development files (to obtain the MySQL Server binaries, visit the
MySQL download site).

» For installing the X DevAPI interface only: Protobuf C++ (version 5. 29. 4).

Installing Connector/Python from Source Code Using pi p

Note

We recommend leveraging python virtual environments to encapsulate the
package installation instead of installing packages directly into the Python
system environment.

For installing the classic interface:

1. Download the latest version of the sdi st of Connector/Python for the classic MySQL protocol,
whose name is in the format of mysqgl _connect or _pyt hon-x.y. z.tar.gz.

2. Optional: To include the C Extension, use these steps to provide the path to the installation
directory of MySQL Server (or to the folder where the server binaries are located) with the
MYSQL_CAPI system variable before running the installation step. On Linux platforms:

$ export MYSQL_CAPI =<path to server binaries>

On Windows platforms:

> $env: MYSQL_CAPI =<pat h to server binaries>
Note

It is not required that the server is actually installed on the system; for
compiling the C-extension, the presence of libraries are sufficient

3. Perform the installation using this command:

pip install ./mysql_connector_python-x.y.z.tar.gz
Warning

DO NOT use nysqgl - connect or - pyt hon instead of . /

mysql _connector _python-x.y. z.tar. gz, as the former will install the
WHEEL package from the PyPI repository, and the latter will install the local
WHEEL that is compiled from the source code.

For installing X DevAPI:

1. Download the latest version of the sdi st of Connector/Python for the MySQL X Protocol, whose
name is in the format of nysql x_connect or _pyt hon-x.y.z.tar. gz.

2. Optional: To include the Protobuf C-Extension, use these commands on Linux platforms to provide
the paths to the Protobuf folders by the MYSQLXPB_* system variables before the installation step:

$ export MYSQLXPB_PROTOBUF=<path to protobuf binaries>

$ export MYSQLXPB_PROTOBUF | NCLUDE_ DI R="${ MYSQLXPB_PROTOBUF}/ i ncl ude"
$ export MYSQLXPB_PROTOBUF_LI B DI R="${ MYSQLXPB_PROTOBUF}/ | i b"

$ export MYSQLXPB_PROTOC="${ MYSQLXPB_PROTOBUF}/ bi n/ pr ot oc"

Or these commands on Windows platforms:

> $env: PROTOBUF=<pat h to protobuf binaries>
> $env: PROTOBUF_| NCLUDE_DI R=$env: PROTOBUF+"\ i ncl ude"

11

https://dev.mysql.com/downloads/
https://docs.python.org/3/tutorial/venv.html

Verifying Your Connector/Python Installation

> $env: PROTOBUF_LI B_DI R=$env: PROTOBUF+"\ | i b"
> $env: PROTOC=%env: PROTOBUF+"\ bi n\ pr ot oc. exe"

3. Perform the installation using this command:
pip install ./nysqlx_connector_python-x.y.z.tar.gz
Warning

DO NOT use nysql x- connect or - pyt hon instead of . /

mysql x_connect or _python-x.y.z.tar. gz, as the former will install
the WHEEL package from the PyPI repository, and the latter will install the
local WHEEL that is compiled from the source code.

4.6 Verifying Your Connector/Python Installation

Verifying Installations by pi p

To verify that a Connector/Python package has been installed successfully using pi p, use the following
command:

$ pip install |ist

If you have installed the classic interface, you should see an output similar to the following:

Package Ver si on

nysql - connect or - pyt hon X.y.Z

If you have installed X DevAPI, you should see an output similar to the following:

Package Ver si on

nmysql x- connect or - pyt hon X.y.z

Installed from an RPM

The default Connector/Python installation location is / pr ef i x/ pyt honX. Y/ si t e- packages/,
where pr ef i x is the location where Python is installed and X. Y is the Python version.

The C Extension is installed as _nysqgl connect or. so and _nysql xpb. so inthe si t e- packages
directory, not in the nysql / connect or and nysql x directories for the classic interface and X
DevAPI, respectively.

Verify the C-extension

To verify the C-extension of the classic package is available, run this command:

$ python -c "inport nysql.connector; assert nysql.connector.HAVE CEXT; print(f'Cext is {nysql.connector.H
If no error is returned, the C-extension has been correctly built and installed.

Similarly, to verify the C-extension of the X DevAPI package is available, run this command and see if it
returns any errors:

$ python -c "inport nysqlx; assert mnysql x. protobuf. HAVE_MYSQLXPB_CEXT; print(f'Cext is {nysqlx. protobuf. H

12

Chapter 5 Connector/Python Coding Examples

Table of Contents

5.1 Connecting to MySQL Using Connector/PYthONc.couiiiiiiiiiii e 13
5.2 Creating Tables Using ConNeCtor/PYINONccuiiiiiiiii e 15
5.3 Inserting Data Using Connector/PYthONooouiiiiiii i 18
5.4 Querying Data Using ConNECtOr/PYtNONiiiiiiiii e e s 19

These coding examples illustrate how to develop Python applications and scripts which connect to
MySQL Server using MySQL Connector/Python.

5.1 Connecting to MySQL Using Connector/Python

The connect () constructor creates a connection to the MySQL server and returns a
My SQLConnect i on object.

The following example shows how to connect to the MySQL server:
i mport nysql . connect or

cnx = mysqgl . connect or. connect (user='scott', password='password'
host='127.0.0. 1
dat abase=' enpl oyees')

cnx. cl ose()

Section 7.1, “Connector/Python Connection Arguments” describes the permitted connection
arguments.

It is also possible to create connection objects using the connection.MySQLConnection() class:

from nysqgl . connector inport (connection)

cnhx = connection. MySQLConnecti on(user="scott', password='password'
host =' 127. 0. 0. 1’
dat abase=' enpl oyees')

cnx. cl ose()

Both forms (either using the connect () constructor or the class directly) are valid and functionally
equal, but using connect () is preferred and used by most examples in this manual.

To handle connection errors, use the t r y statement and catch all errors using the errors.Error
exception:

i mport nysql . connect or
from nysqgl . connector inport errorcode

try:
cnx = mysqgl . connect or. connect (user =' scott',
dat abase=' enpl oy')
except nysql.connector.Error as err
if err.errno == errorcode. ER_ ACCESS DEN ED ERROR:
print("Sonmething is wong with your user nane or password")
elif err.errno == errorcode. ER BAD DB ERROR:
print (" Dat abase does not exist")
el se
print(err)
el se
cnx. cl ose()

Defining connection arguments in a dictionary and using the ** operator is another option:
i mport mnysql . connect or

config = {
‘user': 'scott',

13

Connecting to MySQL Using Connector/Python

' password': ' password'
"host': '127.0.0.1'
' dat abase': ' enpl oyees'

‘rai se_on_warni ngs': True

}

chx = mysql . connector. connect (**confi g)

cnx. cl ose()

Defining Logger options, a reconnection routine, and defined as a connection method named
connect_to_mysql:

i mport | ogging
inmport tinme
i mport mysql . connect or

Set up | ogger

| ogger = | oggi ng. get Logger (__nane__)

| ogger . set Level (| oggi ng. | NFO

formatter = | ogging. Formatter ("% asctinme)s - % nanme)s - %I evel nane)s - % nessage)s")

Log to consol e

handl er = | oggi ng. St reanHandl er ()
handl er. set Formatter (formatter)

| ogger . addHandl er (handl er)

Also log to a file

file_handl er = | ogging.Fil eHandl er("cpy-errors.|og")
file_handl er.setFormatter(formatter)

| ogger . addHandl! er (fi | e_handl er)

def connect_to_nysql (config, attenpts=3, del ay=2)
attenpt = 1
| npl enent a reconnection routine
while attenpt < attenpts + 1
try:
return nysql . connect or. connect (**confi g)
except (nysql.connector.Error, |CError) as err
if (attenpts is attenpt)
Attenpts to reconnect failed; returning None
| ogger.info("Failed to connect, exiting w thout a connection: %", err)
return None
| ogger . i nf o(
"Connection failed: %. Retrying (%/%)...",
err,
att enpt ,
attenpts-1
)
progressive reconnect del ay
tinme.sleep(delay ** attenpt)
attenpt += 1
return None

Connecting and using the Sakila database using the above routine, assuming it's defined in a file

named myconnect i on. py:

from myconnection inport connect_to_mnysq

config = {
"host": "127.0.0.1",
"user": "user",
"password": "pass",
"dat abase": "sakila",
}

cnx = connect _to_nysql (config, attenpts=3)

if cnx and cnx.is_connected()

14

Using the Connector/Python Python or C Extension

with cnx.cursor() as cursor
result = cursor.execute("SELECT * FROM actor LIMT 5")
rows = cursor.fetchall ()
for rows in rows:
print (rows)
cnx. cl ose()
el se

print("Could not connect")

Using the Connector/Python Python or C Extension

Connector/Python offers two implementations: a pure Python interface and a C extension that uses the
MySQL C client library (see Chapter 8, The Connector/Python C Extension). This can be configured at
runtime using the use_pur e connection argument. It defaults to Fal se as of MySQL 8, meaning the C
extension is used. If the C extension is not available on the system then use_pur e defaults to Tr ue.
Setting use_pur e=Fal se causes the connection to use the C Extension if your Connector/Python
installation includes it, while use_pur e=Tr ue to Fal se means the Python implementation is used if
available.

Note
The use_pur e option and C extension were added in Connector/Python 2.1.1.

The following example shows how to set use_pur e to False.
i mport nysql . connect or

cnx = mysqgl . connector. connect (user='scott', password='password'
host =' 127. 0. 0. 1'
dat abase=' enpl oyees'
use_pur e=Fal se)

cnx. cl ose()

Itis also possible to use the C Extension directly by importing the _mysql _connect or module rather
than the nysql . connect or module. For more information, see Section 8.2, “The _mysql_connector
C Extension Module”.

5.2 Creating Tables Using Connector/Python

All DDL (Data Definition Language) statements are executed using a handle structure known as a
cursor. The following examples show how to create the tables of the Employee Sample Database. You
need them for the other examples.

In a MySQL server, tables are very long-lived objects, and are often accessed by multiple applications
written in different languages. You might typically work with tables that are already set up, rather

than creating them within your own application. Avoid setting up and dropping tables over and over
again, as that is an expensive operation. The exception is temporary tables, which can be created and
dropped quickly within an application.

from__future__ inport print_function

i nport nysqgl . connect or
from nysql . connector inport errorcode

DB_NAME = ' enpl oyees

TABLES = {}

15

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_ddl
http://dev.mysql.com/doc/employee/en/index.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_temporary_table

Creating Tables Using Connector/Python

TABLES[' enpl oyees'] = (
" CREATE TABLE " enpl oyees™ ("

‘emp_no’ int(11) NOT NULL AUTO | NCREMENT, "
“birth_date’ date NOT NULL,"

“first_nanme’ varchar(14) NOT NULL,"
“last_nane’ varchar (16) NOT NULL,"
‘gender’ enun('M,"'F) NOT NULL,"
“hire_date’ date NOT NULL,"

PRI MARY KEY (" enp_no')"

") ENG NE=I nnoDB")

TABLES[' departnents'] = (
" CREATE TABLE " departnents” ("

")

“dept _no" char(4) NOT NULL,"
“dept _nane’ varchar (40) NOT NULL, "

PRI MARY KEY (dept_no'), UN QUE KEY "dept_nane" (dept_nane’)"

ENG NE=I nnoDB")

TABLES[' sal aries'] = (
" CREATE TABLE “sal aries™ ("

")

“enp_no’ int(11) NOT NULL,"

“salary’ int(11) NOT NULL,"

“fromdate’ date NOT NULL,"

“to_date’ date NOT NULL,"

PRI MARY KEY (" enp_no , fromdate'), KEY “enp_no (enp_no’

CONSTRAI NT “sal aries_ibfk_1° FOREIGN KEY (enp_no’) "
REFERENCES " enpl oyees™ (enp_no) ON DELETE CASCADE"

ENG NE=I nnoDB")

TABLES[' dept _enp'] = (
" CREATE TABLE " dept _enmp™ ("

“enp_no’ int(11) NOT NULL,"

“dept _no" char(4) NOT NULL,"

“fromdate’ date NOT NULL,"

“to_date’ date NOT NULL,"

PRI MARY KEY (" enp_no', "dept_no'), KEY “enp_no" (enp_no’),

KEY “dept_no" (dept_no’),"

CONSTRAI NT “dept _enp_i bfk_1" FOREIGN KEY (enp_no’) "
REFERENCES " enpl oyees™ (enp_no) ON DELETE CASCADE, "

CONSTRAI NT " dept _enp_i bfk_2° FOREI GN KEY (dept_no’) "
REFERENCES " departnents’ (dept_no) ON DELETE CASCADE"

ENG NE=I nnoDB")

TABLES[' dept _manager'] = (

CREATE TABLE " dept _manager ™ ("
“enp_no’ int(11) NOT NULL,"

“dept _no’ char(4) NOT NULL,"
“fromdate’ date NOT NULL,"
“to_date’ date NOT NULL,"

PRI MARY KEY (enp_no , "dept_no’),"
KEY “enp_no" (enp_no’),"

KEY “dept_no" (dept_no’),"

CONSTRAI NT " dept _nmanager _i bfk_1" FOREIGN KEY (enp_no’) "
REFERENCES " enpl oyees™ (enp_no’) ON DELETE CASCADE, "
CONSTRAI NT " dept _manager _i bf k_2° FOREI GN KEY (dept_no’) "

REFERENCES " departnents’ (dept_no) ON DELETE CASCADE"
ENG NE=I nnoDB")

TABLES['titles'] = (
" CREATE TABLE “titles® ("

")

“enp_no’ int(11) NOT NULL,"

“title wvarchar(50) NOT NULL,"

“fromdate’ date NOT NULL,"

‘to_date’ date DEFAULT NULL, "

PRI MARY KEY (“enp_no’, ‘title, fromdate'), KEY “enp_no (

CONSTRAINT “titles ibfk 1° FOREI GN KEY (' enp_no’)"
REFERENCES " enpl oyees™ (enp_no) ON DELETE CASCADE"

ENG NE=I nnoDB")

=

‘enp_no’),"

The preceding code shows how we are storing the CREATE statements in a Python dictionary called
TABLES. We also define the database in a global variable called DB_NANE, which enables you to easily
use a different schema.

16

Creating Tables Using Connector/Python

chx = mysql . connector. connect (user="'scott")
cursor = cnx.cursor()

A single MySQL server can manage multiple databases. Typically, you specify the database to switch
to when connecting to the MySQL server. This example does not connect to the database upon
connection, so that it can make sure the database exists, and create it if not:

def create_database(cursor):
try:
cur sor. execut e(
" CREATE DATABASE {} DEFAULT CHARACTER SET 'utf8'".format (DB_NAME))
except nysql.connector.Error as err:
print("Failed creating database: {}".format(err))
exit(1)

try:
cursor. execute("USE {}".format (DB_NAME))
except nysql.connector.Error as err:
print ("Dat abase {} does not exists.".format(DB_NAME))
if err.errno == errorcode. ER BAD DB ERROR
creat e_dat abase(cursor)
print ("Dat abase {} created successfully.".fornmat(DB_NAME))
cnx. dat abase = DB_NAME
el se:
print(err)
exit(1)

We first try to change to a particular database using the dat abase property of the connection object
cnx. If there is an error, we examine the error number to check if the database does not exist. If so, we
call the cr eat e_dat abase function to create it for us.

On any other error, the application exits and displays the error message.

After we successfully create or change to the target database, we create the tables by iterating over the
items of the TABLES dictionary:

for table_nane in TABLES:
tabl e_description = TABLES[t abl e_nane]
try:
print("Creating table {}: ".format(tabl e_nane), end="")
cursor. execut e(tabl e_descri ption)
except nysql.connector.Error as err:
if err.errno == errorcode. ER_ TABLE EXI STS_ERROR:
print("already exists.")
el se:
print(err.nsQg)
el se:
print("OK")

cursor. cl ose()
chx. cl ose()

To handle the error when the table already exists, we notify the user that it was already there. Other
errors are printed, but we continue creating tables. (The example shows how to handle the “table
already exists” condition for illustration purposes. In a real application, we would typically avoid the
error condition entirely by using the | F NOT EXI STS clause of the CREATE TABLE statement.)

The output would be something like this:

Dat abase enpl oyees does not exists.

Dat abase enpl oyees created successfully.
Creating tabl e enpl oyees: OK

Creating table departnents: already exists.
Creating table salaries: already exists.
Creating table dept_enp: OK

Creating tabl e dept_nanager: OK

Creating table titles: OK

17

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_database
https://dev.mysql.com/doc/refman/8.0/en/create-table.html

Inserting Data Using Connector/Python

To populate the employees tables, use the dump files of the Employee Sample Database. Note that
you only need the data dump files that you will find in an archive named like enpl oyees_db- dunp-
files-1.0.5.tar.bz2. After downloading the dump files, execute the following commands, adding
connection options to the mysql commands if necessary:

$> tar xzf enpl oyees_db-dunp-files-1.0.5.tar.bz2
$> cd enpl oyees_db
$> nysql enpl oyees
$> nysql enpl oyees
$> nysql enpl oyees
$> nysql enpl oyees
$> nysql enpl oyees
$> nysql enpl oyees

| oad_enpl oyees. dunp
load_titles.dunp

| oad_depart nent s. dunp
| oad_sal ari es. dunp

| oad_dept _enp. dunp

<
<
<
<
<
< | oad_dept _manager . dunp

5.3 Inserting Data Using Connector/Python

Inserting or updating data is also done using the handler structure known as a cursor. When you use a
transactional storage engine such as | nnoDB (the default in MySQL 5.5 and higher), you must commit
the data after a sequence of | NSERT, DELETE, and UPDATE statements.

This example shows how to insert new data. The second | NSERT depends on the value of the newly
created primary key of the first. The example also demonstrates how to use extended formats. The
task is to add a new employee starting to work tomorrow with a salary set to 50000.

Note

The following example uses tables created in the example Section 5.2,
“Creating Tables Using Connector/Python”. The AUTO | NCREMENT column
option for the primary key of the enpl oyees table is important to ensure
reliable, easily searchable data.

from__future__ inport print_function
fromdatetine inport date, datetine, tinedelta
i nport nysqgl . connect or

cnx = nysql . connector. connect (user="'scott', database='enpl oyees')
cursor = cnx.cursor()

tonorrow = datetine.now().date() + tinedelta(days=1)

add_enpl oyee = ("I NSERT | NTO enpl oyees "
"(first_nanme, |ast_nanme, hire_date, gender, birth_date) "
"VALUES (%, %, %, %, %)")
add_salary = ("I NSERT | NTO sal aries "
"(enmp_no, salary, fromdate, to_date) "
"VALUES (% enp_no)s, %salary)s, %fromdate)s, %to_date)s)")

data_enpl oyee = (' Geert', 'Vanderkelen', tonorrow, 'M, date(1977, 6, 14))

Insert new enpl oyee
cursor. execut e(add_enpl oyee, data_enpl oyee)
enp_no = cursor.|astrow d

Insert salary infornation
data_salary = {
‘enp_no': enp_no
'sal ary': 50000
‘fromdate': tonorrow,
"to_date': date(9999, 1, 1)
}

cursor. execute(add_sal ary, data_sal ary)

Make sure data is conmtted to the database
cnx. commi t ()

cursor. cl ose()
cnx. cl ose()

18

http://dev.mysql.com/doc/employee/en/index.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_commit
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key

Querying Data Using Connector/Python

We first open a connection to the MySQL server and store the connection object in the variable cnx.
We then create a new cursor, by default a MySQLCursor object, using the connection's cur sor ()
method.

We could calculate tomorrow by calling a database function, but for clarity we do it in Python using the
dat et i ne module.

Both | NSERT statements are stored in the variables called add_enpl oyee and add_sal ary. Note
that the second | NSERT statement uses extended Python format codes.

The information of the new employee is stored in the tuple dat a_enpl oyee. The query to insert
the new employee is executed and we retrieve the newly inserted value for the enp_no column (an
AUTO_| NCREMENT column) using the | ast r owi d property of the cursor object.

Next, we insert the new salary for the new employee, using the enp_no variable in the dictionary
holding the data. This dictionary is passed to the execut e() method of the cursor object if an error
occurred.

Since by default Connector/Python turns autocommit off, and MySQL 5.5 and higher uses transactional
I nnoDB tables by default, it is necessary to commit your changes using the connection's conmi t ()
method. You could also roll back using the r ol | back() method.

5.4 Querying Data Using Connector/Python

The following example shows how to query data using a cursor created using the connection's
cur sor () method. The data returned is formatted and printed on the console.

The task is to select all employees hired in the year 1999 and print their names and hire dates to the
console.

import datetine
i mport mysql . connect or

cnx = nysql . connector. connect (user="'scott', database='enpl oyees')
cursor = cnx.cursor()

query = ("SELECT first_name, |ast_nanme, hire_date FROM enpl oyees "
"WHERE hire_date BETWEEN % AND %s")

hire_start = datetine.date(1999, 1, 1)
hire_end = datetine.date(1999, 12, 31)

cursor. execute(query, (hire_start, hire_end))

for (first_nane, |ast_name, hire_date) in cursor
print("{}, {} was hired on {: % % %}".format(
| ast _nane, first_name, hire_date))

cursor. cl ose()
cnx. cl ose()

We first open a connection to the MySQL server and store the connection object in the variable cnx.
We then create a new cursor, by default a MySQLCursor object, using the connection's cur sor ()
method.

In the preceding example, we store the SELECT statement in the variable quer y. Note that we are
using unquoted %s-markers where dates should have been. Connector/Python converts hi re_st art
and hi r e_end from Python types to a data type that MySQL understands and adds the required
guotes. In this case, it replaces the first % with ' 1999- 01- 01' , and the second with ' 1999- 12- 31" .

We then execute the operation stored in the quer y variable using the execut e() method. The data
used to replace the %s-markers in the query is passed as atuple: (hire_start, hire_end).

After executing the query, the MySQL server is ready to send the data. The result set could be
zero rows, one row, or 100 million rows. Depending on the expected volume, you can use different

19

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_autocommit
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_rollback
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_query

Querying Data Using Connector/Python

techniques to process this result set. In this example, we use the cur sor object as an iterator. The first
column in the row is stored in the variable f i r st _nane, the second in | ast _nane, and the third in
hire_date.

We print the result, formatting the output using Python's built-in f or nat () function. Note that
hi r e_dat e was converted automatically by Connector/Python to a Python dat et i ne. dat e object.
This means that we can easily format the date in a more human-readable form.

The output should be something like this:

Wlharm LiMn was hired on 16 Dec 1999

W el onsky, Lalit was hired on 16 Dec 1999
Kambl e, Dannz was hired on 18 Dec 1999
DuBour di eux, Zhongwei was hired on 19 Dec 1999
Fuji sawa, Rosita was hired on 20 Dec 1999

20

Chapter 6 Connector/Python Tutorials

Table of Contents

6.1 Tutorial: Raise Employee's Salary Using a Buffered CUrSorcoooveuiiiiiiiiiniiiiiiineceii e, 21

These tutorials illustrate how to develop Python applications and scripts that connect to a MySQL
database server using MySQL Connector/Python.

6.1 Tutorial: Raise Employee's Salary Using a Buffered Cursor

The following example script gives a long-overdue 15% raise effective tomorrow to all employees who
joined in the year 2000 and are still with the company.

To iterate through the selected employees, we use buffered cursors. (A buffered cursor

fetches and buffers the rows of a result set after executing a query; see Section 10.6.1,
“cursor.MySQLCursorBuffered Class”.) This way, it is unnecessary to fetch the rows in a new variables.
Instead, the cursor can be used as an iterator.

Note
This script is an example; there are other ways of doing this simple task.

from__future__ inmport print_function

from deci mal inport Deci mal
fromdatetime inmport datetine, date, tinedelta

i mport mnysql . connect or

Connect with the MySQL Server
cnx = mysql . connect or. connect (user="'scott', database='enpl oyees')

Cet two buffered cursors
cur A = cnx. cursor (buf f er ed=Tr ue)
cur B = cnx. cursor (buf f er ed=Tr ue)

Query to get enployees who joined in a period defined by two dates
query = (
"SELECT s.enp_no, salary, fromdate, to_date FROM enpl oyees AS e "
"LEFT JO N sal aries AS s USING (enp_no)
"WHERE t o_date = DATE('9999-01-01')"
"AND e. hire_date BETWEEN DATE(%s) AND DATE(%)")

UPDATE and | NSERT statenents for the old and new sal ary
update_ol d_salary = (
"UPDATE sal ari es SET to_date = % "
"WHERE enp_no = % AND fromdate = 9%")
insert_new salary = (
"I NSERT | NTO sal aries (enp_no, fromdate, to_date, salary)
"VALUES (%, %, %, %)")

Sel ect the enpl oyees getting a raise
cur A. execut e(query, (date(2000, 1, 1), date(2000, 12, 31)))

lterate through the result of curA
for (enp_no, salary, fromdate, to_date) in curA

Update the old and insert the new sal ary
new_salary = int(round(salary * Decinal ('1.15")))
cur B. execut e(updat e_ol d_sal ary, (tonorrow, enp_no, fromdate))
cur B. execut e(i nsert_new_sal ary,
(enmp_no, tonorrow, date(9999, 1, 1,), new salary))

Commit the changes

21

Tutorial: Raise Employee's Salary Using a Buffered Cursor

cnx. commt ()

cnx. cl ose()

22

Chapter 7 Connector/Python Connection Establishment

Table of Contents

7.1 Connector/Python Connection Arguments
7.2 Connector/Python Option-File Support

Connector/Python provides a connect () call used to establish connections to the MySQL server. The

following sections describe the permitted arguments for connect () and describe how to use option

files that supply additional arguments.

7.1 Connector/Python Connection Arguments

A connection with the MySQL server can be established using either the
nmysqgl . connect or. connect () function or the nysql . connect or. M\ySQ_Connecti on() class:

cnx
cnx

The following table describes the arguments that can be used to initiate a connection. An asterisk (*)

nmysql . connect or. connect (user='j oe', database="test"')

MySQLConnect i on(user='joe', database='test')

following an argument indicates a synonymous argument name, available only for compatibility with
other Python MySQL drivers. Oracle recommends not to use these alternative names.

Table 7.1 Connection Arguments for Connector/Python

Argument Name Default Description

user (user nane¥) The user name used to authenticate with the MySQL
server.

passwor d (passwd*) The password to authenticate the user with the MySQL
server.

passwor dl, passwor d2, For Multi-Factor Authentication (MFA); passwor d1 is

and passwor d3 an alias for passwor d. Added in 8.0.28.

dat abase (db¥) The database name to use when connecting with the
MySQL server.

host 127.0.0.1 The host name or IP address of the MySQL server.

uni x_socket The location of the Unix socket file.

port 3306 The TCP/IP port of the MySQL server. Must be an

integer.

conn_attrs

Standard
values are sent; use conn_at t r s to optionally set

dictionary such as config['conn_attrs'] = {"foo™: "bar"}.

The c-ext and pure python implementations differ.

it. For example, '_client_name' is 'libomysql' with c-ext
but 'mysql-connector-python' with pure python. C-ext
'_connector_license', '_connector_name', and
_source_host'.

This option was added in 8.0.17, as was the default
session_connect_attrs behavior.

per formance_schema. sessi on_connect _attrs

additional custom connection attributes as defined by a

The c-ext implementation depends on the mysqlclient
library so its standard conn_attrs values originate from

adds these additional attributes: ' _connector_version’,

23

Connector/Python Connection Arguments

Argument Name

Default

Description

i nit_conmand

Command (SQL query) executed immediately after the
connection is established as part of the initialization
process. Added in 8.0.32.

aut h_plugin

Authentication plugin to use. Added in 1.2.1.

fido_call back

Deprecated as of 8.2.0 and removed in 8.4.0; instead
use webaut hn_cal | back.

A callable defined by the optional f i do_cal | back
option is executed when it's ready for user interaction
with the hardware FIDO device. This option can be a
callable object or a string path that the connector can
import in runtime and execute. It does not block and is
only used to notify the user of the need for interaction
with the hardware FIDO device.

This functionality was only available in the C extension.
A NotSupportedError was raised when using the pure
Python implementation.

webaut hn_cal | back

A callable defined by the optional

webaut hn_cal | back option is executed when

it's ready for user interaction with the hardware
WebAuthn device. This option can be a callable

object or a string path that the connector can

import in runtime and execute. It does not block

and is only used to notify the user of the need for
interaction with the hardware FIDO device. Enable the
aut henti cati on_webaut hn_cl i ent auth_plugin in
the connection configuration to use.

This option was added in 8.2.0, and it deprecated the
fido_cal | back option that was removed in version
8.4.0.

openi d_t oken_file

Path to the file containing the OpenID JWT formatted
identity token. Added in 9.1.0.

use_uni code

True

Whether to use Unicode.

char set

ut f 8nb4

Which MySQL character set to use.

col l ation

ut f 8mb4_gen
(is

ut f 8_gener @
in 2.x

ANhichaVlySQL collation to use. The 8.x default values
are generated from the latest MySQL Server 8.0
Idefaults.

aut oconmm t

Fal se

Whether to autocommit transactions.

time_zone

Setthe t i ne_zone session variable at connection
time.

sql _node

Set the sgl _node session variable at connection time.

get _war ni ngs

Fal se

Whether to fetch warnings.

rai se_on_war ni ngs

Fal se

Whether to raise an exception on warnings.

connection_ti nmeout
(connect _ti neout *)

Timeout for the TCP and Unix socket connections.

read_ti neout

None

Time limit to receive a response from the server before

raising a ReadTi neout Er r or level error. The default

24

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_autocommit

Connector/Python Connection Arguments

Argument Name

Default

Description

value (None) sets the wait time to indefinitely. Option
added in 9.2.0.

wite tinmeout

None

Time limit to send data to the server before raising a
Wit eTi meout Error level error. The default value
(None) sets the wait time to indefinitely. Option added
in 9.2.0.

client_flags

MySQL client flags.

buf f er ed

Fal se

Whether cursor objects fetch the results immediately
after executing queries.

raw

Fal se

Whether MySQL results are returned as is, rather than
converted to Python types.

consume_results

False

Whether to automatically read result sets.

tls_versions

["TLSv1.2",
"TLSv1.3"]

TLS versions to support; allowed versions are TLSv1.2
and TLSv1.3. Versions TLSv1 and TLSv1.1 were
removed in Connector/Python 8.0.28.

ssl _ca

File containing the SSL certificate authority.

ssl _cert

File containing the SSL certificate file.

ssl _di sabl ed

Fal se

Tr ue disables SSL/TLS usage. The TLSv1 and
TLSv1.1 connection protocols are deprecated as
of Connector/Python 8.0.26 and removed as of
Connector/Python 8.0.28.

ssl _key

File containing the SSL key.

ssl _verify _cert

Fal se

When set to Tr ue, checks the server certificate against
the certificate file specified by the ss| _ca option. Any
mismatch causes a Val ueEr r or exception.

ssl _verify_identity

Fal se

When set to Tr ue, additionally perform host name
identity verification by checking the host name that
the client uses for connecting to the server against the
identity in the certificate that the server sends to the
client. Option added in Connector/Python 8.0.14.

force_ipv6

Fal se

When set to Tr ue, uses IPv6 when an address
resolves to both IPv4 and IPv6. By default, IPv4 is used
in such cases.

ker beros_aut h_node

SSPI

Windows-only, for choosing between

SSPI and GSSAPI at runtime for the

aut henti cati on_kerberos_cl i ent authentication
plugin on Windows. Option added in Connector/Python
8.0.32.

oci _config file

Optionally define a specific path to the

aut henti cation_oci server-side authentication
configuration file. The profile name can be configured
with oci _config profile.

The default file path on Linux and macOS is ~/ . oci /
confi g, and %OVEDRI VEYS4HOVEPATH% . oci
\ confi g on Windows.

oci _config profile

" DEFAULT"

Used to specify a profile to use from the OCI
configuration file that contains the generated ephemeral
key pair and security token. The OCI configuration file
location can be defined by oci _confi g_fil e. Option

25

MySQL Authentication Options

Argument Name

Default

Description

oci _confi g_profil e was added in Connector/
Python 8.0.33.

dsn

Not supported (raises Not Support edErr or when
used).

pool _nane

Connection pool name. The pool name is restricted to
alphanumeric characters and the special characters . ,
_,*, %, and #. The pool name must be no more than
pool i ng. CNX_POOL_MAXNAMESI ZE characters long
(default 64).

pool _size

Connection pool size. The pool size must
be greater than 0 and less than or equal to
pool i ng. CNX_POOL_MAXSI ZE (default 32).

pool reset_session

True

Whether to reset session variables when connection is
returned to pool.

conpress

Fal se

Whether to use compressed client/server protocol.

converter _cl ass

Converter class to use.

converter _str_fall back

Fal se

Enable the conversion to str of value types not
supported by the Connector/Python converter class or
by a custom converter class.

failover

Server failover sequence.

option_files

Which option files to read. Added in 2.0.0.

implementation
(C or Python)
is available,
then then

the default
value is set

to enable

the available

implementation.

option_groups ['client", |Which groups to read from option files. Added in 2.0.0.
' connect or _jpython']

allow local _infile True Whether to enable LOAD DATA LOCAL | NFI LE.

Added in 2.0.0.

use_pure Fal se as Whether to use pure Python or C Extension. If
of 8.0.11, use_pur e=Fal se and the C Extension is not
and Tr ue available, then Connector/Python will automatically
in earlier fall back to the pure Python implementation. Can
versions. be set with mysgl.connector.connect() but not
If only one MySQLConnection.connect(). Added in 2.1.1.

krb_service_princi pal

The "@realm"
defaults to the
default realm,
as configured
in the

kr b5. conf
file.

Must be a string in the form "primary/instance@realm"
such as "ldap/ldapauth@MYSQL.COM" where
"@realm" is optional. Added in 8.0.23.

MySQL Authentication Options

Authentication with MySQL typically uses a user nane and passwor d.

https://dev.mysql.com/doc/refman/8.0/en/load-data.html

MySQL Authentication Options

When the dat abase argument is given, the current database is set to the given value. To change
the current database later, execute a USE SQL statement or set the dat abase property of the
MySQLConnect i on instance.

By default, Connector/Python tries to connect to a MySQL server running on the local host using TCP/
IP. The host argument defaults to IP address 127.0.0.1 and port to 3306. Unix sockets are supported
by setting uni x_socket . Named pipes on the Windows platform are not supported.

Connector/Python supports authentication plugins available as of MySQL 8.0, including the preferred
caching_sha2_password authentication plugin.

The deprecated mysql_native_password plugin is supported, but it is disabled by default as of MySQL
Server 8.4.0 and removed as of MySQL Server 9.0.0.

The connect () method supports an aut h_pl ugi n argument that can be used to force use of a
particular authentication plugin.

Note

MySQL Connector/Python does not support the old, less-secure password
protocols of MySQL versions prior to 4.1.

Connector/Python supports the Kerberos authentication protocol for passwordless authentication.
Linux clients are supported as of Connector/Python 8.0.26, and Windows support was added in
Connector/Python 8.0.27 with the C extension implementation, and in Connector/Python 8.0.29 with
the pure Python implementation. For Windows, the related ker ber os_aut h_node connection option
was added in 8.0.32 to configure the mode as either SSPI (default) or GSSAPI (via the pure Python
implementation, or the C extension implementation as of 8.4.0). While Windows supports both modes,
Linux only supports GSSAPI.

Optionally use the [gssapi] shortcut when installing the mysql - connect or - pyt hon pip package to
pull in specific GSSAPI versions as defined by the connector, which is v1.8.3 as of Connector/Python
9.1.0:

$ pip install nysqgl-connect or-pyt hon[gssapi]

The following example assumes LDAP Pluggable Authentication is set up to utilize GSSAPI/Kerberos
SASL authentication:

i mport mnysql . connector as cpy
i mport | ogging

| oggi ng. basi cConfi g(! evel =l oggi ng. DEBUG)

SERVI CE_NAME = "| dap"
LDAP_SERVER | P = "server_ip or hostname" # e.g., w nexanpleOl
config = {

"host": "127.0.0.1",

"port": 3306,

"user": "nyuser @xanpl e. cont',

"password": "s3cret",

"use_pure": True,
"krb_service_principal": f"{SERVI CE_NAVE}/{ LDAP_SERVER | P}"
}

wi th cpy.connect (**config) as cnx:
with cnx.cursor() as cur:
cur . execut e(" SELECT @@er si on")
res = cur.fetchone()
print(res[0])

Connector/Python supports Multi-Factor Authentication (MFA) as of v8.0.28 by utilizing the passwor d1
(alias of passwor d), passwor d2, and passwor d3 connection options.

27

https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/native-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html

Character Encoding

Connector/Python supports WebAuthn Pluggable Authentication as of Connector/Python 8.2.0, which
is supported in MySQL Enterprise Edition. Optionally use the Connector/Python webauthn_callback
connection option to notify users that they need to touch the hardware device. This functionality is
present in the C implementation (which uses libmysgiclient) but the pure Python implementation
requires the FIDO2 dependency that is not provided with the MySQL connector and is assumed to
already be present in your environment. It can be independently installed using:

$> pip install fido2

Previously, the now removed (as of version 8.4.0) aut henti cati on_fi do MySQL Server plugin was
supported using the fido_callback option that was available in the C extension implementation.

Connector/Python supports OpenID Connect as of Connector/Python 9.1.0. Functionality is enabled
with the aut henti cati on_openi d_connect _cl i ent client-side authentication plugin connecting
to MySQL Enterprise Edition with the aut henti cati on_openi d_connect authentication plugin.
These examples enable the plugin with aut h_pl ugi n and defines the JWT Identity Token file location
with openi d_t oken_fil e:

Standard connecti on
i mport mysql . connector as cpy

config = {
"host": "l ocal host",
"port": 3306,
"user": "root",
"openi d_token_file": "{path-to-id-token-file}",
"aut h_pl ugi n": "authenticati on_openi d_connect_client",

"use_pure": True, # Use Fal se for C Extension
}
with cpy.connect (**config) as cnx:
with cnx.cursor() as cur:
cur . execut e(" SELECT @@er si on")
print(cur.fetchall())

Or, using an async connection
i mport mysql.connector.aio as cpy_async
i mport asynci o

config = {
"host": "l ocal host",
"port": 3306,
"user": "root",
"aut h_pl ugi n": "authenticati on_openi d_connect_client",

"openi d_token_file": "{path-to-id-token-file}",
}
async def test():
async wWith await cpy_async.connect(**config) as cnx:
async with await cnx.cursor() as cur:
await cur. execut e(" SELECT @@er si on")
print(await cur.fetchall())
asynci o.run(test())

Character Encoding

By default, strings coming from MySQL are returned as Python Unicode literals. To change this
behavior, set use_uni code to Fal se. You can change the character setting for the client connection
through the char set argument. To change the character set after connecting to MySQL, set the

char set property of the My SQLConnect i on instance. This technique is preferred over using the SET
NANMES SQL statement directly. Similar to the char set property, you can set the col | at i on for the
current MySQL session.

Transactions

The aut oconmmi t value defaults to Fal se, so transactions are not automatically committed. Call

the conmi t () method of the MySQLConnect i on instance within your application after doing a set
of related insert, update, and delete operations. For data consistency and high throughput for write
operations, it is best to leave the aut ocommi t configuration option turned off when using | nnoDB or
other transactional tables.

28

https://dev.mysql.com/doc/refman/8.4/en/webauthn-pluggable-authentication.html

Time Zones

Time Zones

The time zone can be set per connection using the t i me_zone argument. This is useful, for example,
if the MySQL server is set to UTC and Tl MESTANP values should be returned by MySQL converted to
the PST time zone.

SQL Modes

MySQL supports so-called SQL Modes. which change the behavior of the server globally or per
connection. For example, to have warnings raised as errors, set sql _node to TRADI Tl ONAL. For
more information, see Server SQL Modes.

Troubleshooting and Error Handling

Warnings generated by queries are fetched automatically when get _war ni ngs is setto Tr ue. You
can also immediately raise an exception by setting r ai se_on_war ni ngs to Tr ue. Consider using the
MySQL sql_mode setting for turning warnings into errors.

To set a timeout value for connections, use connecti on_ti nmeout .

Enabling and Disabling Features Using Client Flags

MySQL uses client flags to enable or disable features. Using the cl i ent _f | ags argument, you have
control of what is set. To find out what flags are available, use the following:

from nysqgl . connector. constants inport dientFlag
print "\n'.join(CientFlag.get_full_info())

Ifclient _fl ags is not specified (that is, it is zero), defaults are used for MySQL 4.1 and higher. If
you specify an integer greater than 0, make sure all flags are set properly. A better way to set and
unset flags individually is to use a list. For example, to set FOUND_ROWS, but disable the default
LONG_FLAG

flags = [dientFl ag. FOUND_ROA5, -dientFl ag. LONG FLAG
nysql . connect or. connect (client_fl ags=fl ags)

Result Set Handling

By default, MySQL Connector/Python does not buffer or prefetch results. This means that after a query
is executed, your program is responsible for fetching the data. This avoids excessive memory use
when queries return large result sets. If you know that the result set is small enough to handle all at
once, you can fetch the results immediately by setting buf f er ed to Tr ue. It is also possible to set this
per cursor (see Section 10.2.6, “MySQLConnection.cursor() Method”).

Results generated by queries normally are not read until the client program fetches them. To
automatically consume and discard result sets, set the consune_r esul t s option to Tr ue. The result
is that all results are read, which for large result sets can be slow. (In this case, it might be preferable to
close and reopen the connection.)

Type Conversions

By default, MySQL types in result sets are converted automatically to Python types. For example, a
DATETI ME column value becomes a datetime.datetime object. To disable conversion, set the r aw
option to Tr ue. You might do this to get better performance or perform different types of conversion
yourself.

Connecting through SSL

Using SSL connections is possible when your Python installation supports SSL, that is, when
it is compiled against the OpenSSL libraries. When you provide the ssl _ca, ssl _key and

29

https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect.html
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/ssl.html

Connection Pooling

ssl _cert options, the connection switches to SSL, and the cl i ent _f | ags option includes the
Cl i ent Fl ag. SSL value automatically. You can use this in combination with the conpr essed option
setto True.

As of Connector/Python 2.2.2, if the MySQL server supports SSL connections, Connector/Python
attempts to establish a secure (encrypted) connection by default, falling back to an unencrypted
connection otherwise.

From Connector/Python 1.2.1 through Connector/Python 2.2.1, it is possible to establish an SSL
connection using only the ssl _ca opion. The ssl _key and ssl _cert arguments are optional.
However, when either is given, both must be given or an At t r i but eEr r or is raised.

Note (Exanple is valid for Python v2 and v3)
from_ future__ inport print_function

i mport sys
#sys. path.insert(0, 'python{0Q}/"'.format(sys.version_info[0]))

i mport nysqgl . connect or
from nysql . connector. constants inport dientFlag

config = {
"user': 'ssluser'
' password': ' password'

"host': '127.0.0.1',

"client_flags': [CientFlag. SSL],

"ssl_ca': '/opt/nysql/ssl/ca. pem

"ssl_cert': '/opt/nysql/ssl/client-cert.pen

'ssl _key': '/opt/nysql/ssl/client-key. pen,
}

cnx = nysgl . connector. connect (**confi g)

cur = cnx. cursor (buffered=True)

cur . execut e(" SHOW STATUS LI KE ' Ssl _ci pher'")
print(cur.fetchone())

cur. cl ose()

cnx. cl ose()

Connection Pooling

With either the pool _nane or pool _si ze argument present, Connector/Python creates the new
pool. If the pool _namne argument is not given, the connect () call automatically generates the name,
composed from whichever of the host , port, user, and dat abase connection arguments are given,
in that order. If the pool _si ze argument is not given, the default size is 5 connections.

The pool _reset _sessi on permits control over whether session variables are reset when the
connection is returned to the pool. The default is to reset them.

For additional information about connection pooling, see Section 9.5, “Connector/Python Connection
Pooling”.

Protocol Compression
The boolean conpr ess argument indicates whether to use the compressed client/server protocol

(default Fal se). This provides an easier alternative to setting the Cl i ent Fl ag. COVPRESS flag. This
argument is available as of Connector/Python 1.1.2.

Converter Class

The converter cl ass argument takes a class and sets it when configuring the
connection. An At t ri but eEr r or is raised if the custom converter class is not a subclass of
conver si on. MySQLConvert er Base.

30

Server Failover

Server Failover

The connect () method accepts a f ai | over argument that provides information to use for server
failover in the event of connection failures. The argument value is a tuple or list of dictionaries (tuple
is preferred because it is nonmutable). Each dictionary contains connection arguments for a given
server in the failover sequence. Permitted dictionary values are: user, passwor d, host , port,

uni x_socket , dat abase, pool _nane, pool _si ze. This failover option was added in Connector/
Python 1.2.1.

Option File Support
As of Connector/Python 2.0.0, option files are supported using two options for connect () :

« option_files:Which option files to read. The value can be a file path name (a string) or a
sequence of path name strings. By default, Connector/Python reads no option files, so this argument
must be given explicitly to cause option files to be read. Files are read in the order specified.

» option_groups: Which groups to read from option files, if option files are read. The value can
be an option group name (a string) or a sequence of group name strings. If this argument is not
given, the default valueis[' client', 'connector_python'] toreadthe[client] and
[connect or _pyt hon] groups.

For more information, see Section 7.2, “Connector/Python Option-File Support”.

LOAD DATA LOCAL INFILE

Prior to Connector/Python 2.0.0, to enable use of LOAD DATA LOCAL | NFI LE, clients had to explicitly
setthe Cl i ent Fl ag. LOCAL_FI LES flag. As of 2.0.0, this flag is enabled by default. To disable it, the
al ow | ocal _i nfil e connection option can be set to Fal se at connect time (the default is Tr ue).

Compatibility with Other Connection Interfaces

passwd, db and connect _ti nmeout are valid for compatibility with other MySQL interfaces
and are respectively the same as passwor d, dat abase and connecti on_ti neout. The
latter take precedence. Data source name syntax or dsn is not used; if specified, it raises a
Not Support edErr or exception.

Client/Server Protocol Implementation

Connector/Python can use a pure Python interface to MySQL, or a C Extension that uses the MySQL
C client library. The use_pur e mysgl.connector.connect() connection argument determines which. The
default changed in Connector/Python 8 from Tr ue (use the pure Python implementation) to Fal se.
Setting use_pur e changes the implementation used.

The use_pur e argument is available as of Connector/Python 2.1.1. For more information about the C
extension, see Chapter 8, The Connector/Python C Extension.

7.2 Connector/Python Option-File Support

Connector/Python can read options from option files. (For general information about option files in
MySQL, see Using Option Files.) Two arguments for the connect () call control use of option files in
Connector/Python programs:

e option_files:Which option files to read. The value can be a file path name (a string) or a
sequence of path name strings. By default, Connector/Python reads no option files, so this argument
must be given explicitly to cause option files to be read. Files are read in the order specified.

» option_groups: Which groups to read from option files, if option files are read. The value can
be an option group name (a string) or a sequence of group name strings. If this argument is not

31

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html

Connector/Python Option-File Support

given, the default valueis[' cl ient', 'connector_ python'],toreadthe[client] and
[connect or _pyt hon] groups.

Connector/Python also supports the ! i ncl ude and ! i ncl udedi r inclusion directives within option
files. These directives work the same way as for other MySQL programs (see Using Option Files).

This example specifies a single option file as a string:

cnx = nysgl . connector. connect (option_files='/etc/nmysqgl/connectors.cnf')

This example specifies multiple option files as a sequence of strings:

nysqgl _option_files = [
'/ etc/nysql / connectors. cnf’
' ./ devel opnent . cnf'

]

cnhx = mysqgl . connect or. connect (option_fil es=nysql _option_files)

Connector/Python reads no option files by default, for backward compatibility with versions older than
2.0.0. This differs from standard MySQL clients such as nysql or nysql dunp, which do read option
files by default. To find out which option files the standard clients read on your system, invoke one of
them with its - - hel p option and examine the output. For example:

$> nysql --help

Default options are read fromthe following files in the given order
/etc/my.cnf /etc/mysql/my.cnf /usr/local/nysql/etc/my.cnf ~/.ny.cnf

If you specify the opt i on_f i | es connection argument to read option files, Connector/Python reads
the[client] and [connect or pyt hon] option groups by default. To specify explicitly which

groups to read, use the opti on_gr oups connection argument. The following example causes only the
[connect or _pyt hon] group to be read:

cnx = mysql . connector. connect (option_fil es="/etc/ mysqgl/connectors.cnf'
opti on_groups=' connect or_pyt hon')

Other connection arguments specified in the connect () call take precedence over options read from
option files. Suppose that/ et ¢/ nysql / connect or s. conf contains these lines:

[client]
dat abase=cpyapp

The following connect () call includes no dat abase connection argument. The resulting connection
uses cpyapp, the database specified in the option file:

cnx = mysql . connector. connect (option_files='/etc/ nysqgl/connectors.cnf')

By contrast, the following connect () call specifies a default database different from the one found in
the option file. The resulting connection uses cpyapp_dev as the default database, not cpyapp:

cnx2 = nysql . connector. connect (option_fil es="/etc/ nmysqgl/connectors.cnf’
dat abase=' cpyapp_dev')

Connector/Python raises a Val ueEr r or if an option file cannot be read, or has already been read.
This includes files read by inclusion directives.

For the [connect or _pyt hon] group, only options supported by Connector/Python are accepted.
Unrecognized options cause a Val ueEr r or to be raised.

For other option groups, Connector/Python ignores unrecognized options.

It is not an error for a named option group not to exist.

32

https://dev.mysql.com/doc/refman/8.0/en/option-files.html

Option Parsing

Option Parsing

Connector/Python reads the option values in option files as strings, and attempts to parse them using
Python's ast . | i t eral _eval function. This allows specifying values like numbers, tuples, lists, and
booleans in the option files. If a value can't be parsed by ast. | it eral _eval thenit's passed as a
literal string.

For example, this option file has options with values using a number, a string, and a tuple of
dictionaries that are correctly parsed for the [connect or _pyt hon] group:

[connect or _pyt hon]

dat abase=cpyapp

por t =3656

failover=({'host': '203.0.113.1', 'port': 3640}, {'host': '203.0.113.101', 'port': 3650})

For additional information, review Python's ast.literal_eval documentation including how to handle
unsanitized data that could crash the Python interpreter. Confirm that the option file values are
trustworthy and valid before parsing.

33

https://docs.python.org/3/library/ast.html#ast.literal_eval

34

Chapter 8 The Connector/Python C Extension

Table of Contents

8.1 Application Development with the Connector/Python C EXtENSIONccccevviviiiviiiiieiiiiecieeeannn, 35
8.2 The _mysqgl_connector C EXtension MOAUIEuuiiiiiiiiiiiciie e e 36

Connector/Python supports a C extension that interfaces with the MySQL C client library. For queries
that return large result sets, using the C Extension can improve performance compared to a “pure
Python” implementation of the MySQL client/server protocol. Section 8.1, “Application Development
with the Connector/Python C Extension”, describes how applications that use the nmysql . connect or
module can use the C Extension. It is also possible to use the C Extension directly, by importing

the _mysql _connect or module rather than the nysql . connect or module. See Section 8.2,

“The _mysql_connector C Extension Module”. For information about installing the C Extension, see
Chapter 4, Connector/Python Installation.

Note

The C extension was added in version 2.1.1 and is enabled by default as of
8.0.11. The use_pur e option determines whether the Python or C version of
this connector is enabled and used.

8.1 Application Development with the Connector/Python C
Extension

Installations of Connector/Python from version 2.1.1 on support a use_pur e argument to
nysgl . connect or. connect () that indicates whether to use the pure Python interface to MySQL or
the C Extension that uses the MySQL C client library:

» By default, use_pur e (use the pure Python implementation) is Fal se as of MySQL 8 and defaults
to Tr ue in earlier versions. If the C extension is not available on the system then use_pur e is Tr ue.

» On Linux, the C and Python implementations are available as different packages. You can install one
or both implementations on the same system. On Windows and macOS, the packages include both
implementations.

For Connector/Python installations that include both implementations, it can optionally be toggled
it by passing use_pur e=Fal se (to use C implementation) or use_pur e=Tr ue (to use the Python
implementation) as an argument to nysql . connect or . connect () .

» For Connector/Python installations that do not include the C Extension, passing use_pur e=Fal se
tonmysql . connect or. connect () raises an exception.

 For older Connector/Python installations that know nothing of the C Extension (before version 2.1.1),
passing use_pur e tonysql . connect or. connect () raises an exception regardless of its value.

Note

On macOS, if your Connector/Python installation includes the C Extension,
but Python scripts are unable to use it, try setting your DYLD LI BRARY PATH
environment variable the directory containing the C client library. For example:

export DYLD LI BRARY_PATH=/usr/| ocal /mysqgl/lib (for sh)
setenv DYLD LI BRARY_PATH /usr/ | ocal /mysqgl/lib (for tcsh)

If you built the C Extension from source, this directory should be the one
containing the C client library against which the extension was built.

35

The _mysqgl_connector C Extension Module

If you need to check whether your Connector/Python installation is aware of the C Extension, test the
HAVE CEXT value. There are different approaches for this. Suppose that your usual arguments for
nysgl . connect or. connect () are specified in a dictionary:

config = {
‘user': 'scott',
' password': ' password'
"host': '127.0.0.1',
' dat abase': ' enpl oyees'
}

The following example illustrates one way to add use_pur e to the connection arguments:
i nport nysqgl . connect or

if nysql.connector.__version_info__ > (2, 1) and nysgl . connect or. HAVE_CEXT
config['use_pure'] = Fal se

If use_pur e=Fal se and the C Extension is not available, then Connector/Python will automatically fall
back to the pure Python implementation.

8.2 The _mysqgl_connector C Extension Module

To use the C Extension directly, import the _mysqgl connect or module rather than
nysgl . connect or, then use the nysql connector. MySQL() class to obtain a MySQL instance.
For example:

import _mysql _connector

ccnx = _nysql _connector. MySQL()
ccnx. connect (user='scott', password='password'
host='127.0.0.1', database='enpl oyees')

ccnx. quer y(" SHOW VARI ABLES LI KE ' versi on% ")
row = ccnx. fetch_row)
whi l e row
print (row)
row = ccnx. fetch_row)
ccnx. free_result()

ccnx. ¢l ose()

For more information, see Chapter 11, Connector/Python C Extension API Reference.

36

Chapter 9 Connector/Python Other Topics

Table of Contents

9.1 CoNNECLOI/PYINON LOGUING ...evttieiiiiiiee ettt ettt e e e e e na e 37
9.2 TelEMELIY SUPPOIT ...ttt ettt ettt e ettt e ettt e e et et e e e ettt e et e bt e e e e erbaeeeenbaeeees 37
9.3 Executing MUItiple STAtEMENTSoouuiiiiiiii et 40
9.4 ASYNCRIroNOUS CONNECHIVILYeiiitiieiiit et ettt e e et e e e et e e e et e e e enae e eeees 43
9.5 Connector/Python ConNection POONINGiiiiiiiiiiiii e 53
9.6 Connector/Python Django Back ENdcccouuiiiiiiiiiiiiiiiec e 54

9.1 Connector/Python Logging

By default, logging functionality follows the default Python logging behavior. If logging functionality is
not configured, only events with a severity level of WARNING and greater are printed to sys.stderr. For
related information, see Python's Configuring Logging for a Library documentation.

Outputting additional levels requires configuration. For example, to output debug events to sys.stderr
set logging.DEBUG and add the logging.StreamHandler handler. Additional handles can also be
added, such as logging.FileHandler. This example sets both:

Classic Protocol Exanple
i mport | o0gging
i mport nysql . connect or

| ogger = | o0ggi ng. get Logger (" nysql . connector")
| ogger . set Level (| oggi ng. DEBUG)

formatter = | oggi ng. Formatter ("% asctine)s - %nane)s - %I evel nane)s- % nessage)s")

stream handl er = | oggi ng. St reantandl er ()
stream handl er. set Formatter (formatter)
| ogger . addHandl er (st ream handl er)

file_handl er = |o0gging. Fil eHandl er ("cpy. | og")
file_handl er.setFormatter(formatter)
| ogger . addHandl er (fi |l e_handl er)

XDevAPl Protocol Exanple
i mport | ogging
i mport nysql x

| ogger = | oggi ng. get Logger (" nysql x")
| ogger . set Level (| oggi ng. DEBUG)

formatter = | oggi ng. Formatter ("% asctine)s - %nane)s - %I evel nane)s- % nessage)s")
stream handl er = | oggi ng. St reantandl er ()

stream handl er. set Formatter (formatter)

| ogger . addHandl er (st ream handl er)

file_handl er = |o0gging. Fil eHandl er ("cpy.|og")

file_handl er.setFormatter(formatter)
| ogger . addHandl er (fi |l e_handl er)

9.2 Telemetry Support

MySQL Server added OpenTelemetry support in MySQL Enterprise Edition version 8.1.0, which is a
commercial product. OpenTelemetry tracing support was added in Connector/Python 8.1.0.

37

https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library
https://www.mysql.com/products/enterprise/

Introduction to OpenTelemetry

Introduction to OpenTelemetry

OpenTelemetry is an observability framework and toolkit designed to create and manage telemetry
data such as traces, metrics, and logs. Visit What is OpenTelemetry? for an explanation of what
OpenTelemetry offers.

Connector/Python only supports tracing, so this guide does not include information about metric and
log signals.

Installing Telemetry Support

Install the OpenTelemetry API, SDK, and OTLP Exporter packages on the system along with
Connector/Python. Optionally use the [t el enet r y] shortcut when installing the nysql - connect or -
pyt hon pip package to pull in specific OpenTelemetry versions as defined by the connector.

Manual installation:

pip install opentel enetry-api

pip install opentel emetry-sdk

pip install opentel enetry-exporter-otlp-proto-http
pip install nysql-connector-python

Or pass in [telemetry] when installing Connector/Python to perform the same actions except it
installs a specific and tested OpenTelemetry version, which for Connector/Python 9.4.0 and later is
OpenTelemetry v1.33.1:

pi p install nysqgl-connector-python[tel enetry]

Connector/Python 8.1.0 through 8.4.0 included an [opentelemetry] option that installed a bundled
version of the OpenTelemetry SDK/API libraries. Doing so in those versions was not recommended.

Instrumentation

For instrumenting an application, Connector/Python utilizes the official OpenTelemetry SDK to initialize
OpenTelemetry, and the official OpenTelemetry API to instrument the application's code. This emits
telemetry from the application and from utilized libraries that include instrumentation.

An application can be instrumented as demonstrated by this generic example:

from opentel enetry inport trace

from opentel enetry. sdk.trace i nmport Tracer Provider

from opentel enetry. sdk. trace. export inmport BatchSpanProcessor
from opentel enetry. sdk. trace. export inport Consol eSpanExporter

provi der = TracerProvi der ()

processor = Bat chSpanProcessor (Consol eSpanExporter())
provi der. add_span_pr ocessor (processor)
trace.set_tracer_provider(provider)

tracer = trace.get_tracer(__nanme_)

with tracer.start_as_current _span("app"):
my_app()

To better understand and get started using OpenTelemetry tracing for Python, see the official
OpenTelemetry Python Instrumentation guide.

MySQL Connector/Python

Connector/Python includes a MySQL instrumentor to instrument MySQL connections. This
instrumentor provides an APl and usage similar to OpenTelemetry's own MySQL package named
opentelemetry-instrumentation-mysql.

An exception is raised if a system does not support OpenTelemetry when attempting to use the
instrumentor.

38

https://opentelemetry.io/docs/what-is-opentelemetry/
https://opentelemetry.io/docs/instrumentation/python/manual/
https://github.com/open-telemetry/opentelemetry-python-contrib/tree/main/instrumentation/opentelemetry-instrumentation-mysql

Morphology of the Emitted Traces

An example that utilizes the system's OpenTelemetry SDK/API and implements tracing with MySQL
Connector/Python:

i nport os
i mport nysql . connect or

An instrunmentor that cones w th nysql - connector- pyt hon
from nmysqgl . connect or. opentel emetry. i nstrunentation inport (
M/SQLI nstrunent or as Oracl eMySQLI nstrunent or,

)

Loading SDK from the system

from opentel enetry inport trace

from opentel enetry. sdk.trace i nport Tracer Provider

from opentel enetry. sdk. trace. export inport BatchSpanProcessor
from opentel enetry. sdk. trace. export inport Consol eSpanExporter

provi der = Tracer Provi der ()

processor = Bat chSpanProcessor (Consol eSpanExporter())
provi der. add_span_pr ocessor (processor)
trace.set_tracer_provider(provider)

tracer = trace.get_tracer(__nanme_)

config = {
"host": "127.0.0.1",
"user": "root",

"password": os.environ.get("password"),
"use_pure": True,

"port": 3306,

"dat abase": "test",

}

A obal instrunentation: all connection objects returned by
nysql . connector.connect will be instrunented.
Oracl eMySQLI nstrumentor (). i nstrunent ()

with tracer.start_as_current _span("client_app"):
wi th nmysqgl.connector.connect (**config) as cnx:
with cnx.cursor() as cur:

cur. execut e(" SELECT @@ersi on")
_ = cur.fetchall ()

Morphology of the Emitted Traces

A trace generated by the Connector/Python instrumentor contains one connection span, and zero or
more query spans as described in the rest of this section.

Connection Span

» Time from connection initialization to the moment the connection ends. The span is named
connecti on.

« If the application does not provide a span, the connection span generated is a ROOT span,
originating in the connector.

« If the application does provide a span, the query span generated is a CHILD span, originating in the
connector.

Query Span

« Time from when an SQL statement is requested (on the connector side) to the moment the
connector finishes processing the server's reply to this statement.

» A query span is created for each query request sent to the server. If the application does not provide
a span, the query span generated is a ROOT span, originating in the connector.

« If the application does provide a span, the query span generated is a CHILD span, originating in the
connector.

39

Disabling Trace Context Propagation

e The query span is linked to the existing connection span of the connection the query was executed.
» Query attributes with prepared statements is supported as of MySQL Enterprise Edition 8.3.0.

» Query spans for the connection object is supported as of Connector/Python 8.3.0, which includes
methods such as commit(), rollback(), and cmd_change_user().

Context Propagation
By default, the trace context of the span in progress (if any) is propagated to the MySQL server.

Propagation has no effect when the MySQL server either disabled or does not support OpenTelemetry
(the trace context is ignored by the server), however, when connecting to a server with OpenTelemetry
enabled and configured, the server processes the propagated traces and creates parent-child
relationships between the spans from the connector and those from the server. In other words, this
provides trace continuity.

Note

Context propagation with prepared statements is supported as of MySQL
Enterprise Edition 8.3.0.

e The trace context is propagated for statements with query attributes defined in the MySQL client/
server protocol, such as COM_QUERY.

The trace context is not propagated for statements without query attributes defined in the MySQL
client/server protocol, statements such as COM_PING.

» Trace context propagation is done via query attributes where a new attribute named "traceparent” is
defined. Its value is based on the current span context. For details on how this value is computed,
read the traceparent header W3C specification.

If the "traceparent” query attribute is manually set for a query, then it is not be overwritten by the
connector; it's assumed that it provides OTel context intended to forward to the server.

Disabling Trace Context Propagation

The boolean connection property named ot el _cont ext _propagati onis Tr ue by default. Setting it
to Fal se disables context propagation.

Since ot el _cont ext _propagat i on is a connection property that can be changed after a connection
is established (a connection object is created), setting such property to Fal se does not have an effect
over the spans generated during the connection phase. In other words, spans generated during the
connection phase are always propagated since ot el _cont ext _propagati onis Tr ue by default.

This implementation is distinct from the implementation provided through the MySQL client library (or
therelated t el enet ry_cl i ent client-side plugin).

9.3 Executing Multiple Statements

Connector/Python can execute either a single or multiple statements, this section references multiple
statement and associated delimiter support.

Note

Before Connector/Python 9.2.0, the nul t i option was required to execute
multiple statements. This option provided inconsistent results and was removed
in 9.2.0.

Basic usage example:

sgl _operation = """
SET @=1, @®='2024-02-01";
SELECT @, LENGTH('hello'), @;

40

https://www.w3.org/TR/trace-context/#traceparent-header

Multiple Statement Result Mapping

SELECT @@er si on;

with cnx.cursor() as cur:
Execute SQL; it can contain one or nmultiple statenents
cur . execut e(sqgl _operati on)

Fetch result set, see other exanples for additional information

Custom delimiters are also supported (as of Connector/Python 9.2.0), including in scripts that include
delimiters and multiple statements. The Sakila sample database file saki | a- schenma. sqgl is an

example:
with cnx.cursor() as cur:
wi th open(
os.path.join("/path/to/files", "sakila-schema.sql"), encodi ng="utf-8"
) as code:

cur . execut e(code. read())

Fetch result set, see other exanples for additional information

Multiple Statement Result Mapping

The optional map_r esul t s option (defaults to Fal se) makes each statement relate to its
corresponding result set.

sql _operation = ...

with cnx.cursor() as cur:
Execute SQ.; it can contain one or nmultiple statenents
cur. execut e(sql _operation, map_results=True)

Fetch result set, see other exanples for additional information

A MySQL multi statement or script is composed of one or more single statements. There are two types
of single statements:

» Si npl e: these do not include a BEG N- END body declaration.

e Conpound: these do include a BEG N- END body declaration, such as:

CREATE PROCEDURE dor epeat (pl | NT)
BEG N

SET @& = 0;

REPEAT SET @& = @ + 1; UNTIL @ > pl END REPEAT;
END;

Connector/Python uses custom delimiters to break up a multi statement into individual statements
when handling compound single statements, like how the MySQL client does. Simple single statements
do not require custom delimiters but they can be used.

If no delimiters are utilized when working with compound single statements, the statement-result
mapping may cause unexpected results. If mapping is disabled, compound single statements may or
may not utilize delimiters.

An example using a mix of simple and compound statements:
DROP PROCEDURE | F EXI STS dor epeat ;
DELI M TER //

CREATE PROCEDURE dor epeat (pl | NT)
BEG N

SET @& = O;

REPEAT SET @ = @ + 1; UNTIL @ > pl END REPEAT,;
END/ /

DELI M TER ;

41

Fetching Result Sets

SELECT @;

Connector/Python carries on a pre-processing step for handling delimiters that may affect performance
for large scripts. There are also limitations when working with custom delimiters:

* Unsupported delimters:the following characters are not supported by the connector in
DELI M TER statements:

doubl e quot e:

singl e quot e:

hash: #

slash plus star: /*
star plus slash: */

Avoid using these symbols as part of a string representing a delimiter.

e DELI M TER: the word DELIMITER and any of its lower and upper case combinations such as
delimiter, DeLiMiter, and so on, are considered reserved words by the connector. Users must
quote these when included in multi statements for other purposes different from declaring an
actual statement delimiter; such as names for tables, columns, variables, in comments, and so on.
Example:

CREATE TABLE “delimter” (begin INT, end INT); -- | ama " DELinm Ter® conment

Fetching Result Sets

Basic usage (mapping disabled):

sql _operation = """

SET @=1, @-='2024-02-01";
SELECT @, LENGTH('hello'), @;
SELECT @@er si on;

with cnx.cursor() as cur:
Execute a statement; it can be single or multi.
cur . execut e(sqgl _operati on)

Fetch result sets and do sonething with them
result_set = cur.fetchall ()

do sonething with result set

whi | e cur.nextset():
result_set = cur.fetchall ()
do sonething with result set

The multi statement execution generates one or more result sets, in other words a set of result sets.
The first result set is loadable after execution completes. You might fetch (using f et chal | ()) the
current result set and process it, or not, and move onto the next one.

Alternatively, use the nextset() cursor APl method to traverse a result set. This method makes the
cursor skip to the next available set, discarding any remaining rows from the current set.

For executions generating only one result set, which happens when your script only includes one
statement, the call to nextset() can be omitted as at most one result set is expected. Calling it returns
None as there are no more sets.

With Statement-ResultSet mapping usage:
sql _operation = ...
with cnx.cursor() as cur:

Execute a statenent; it can be single or nmulti.
cur. execut e(sqgl _operation, map_resul ts=True)

42

Shortcut for consuming result sets

Fetch result sets and do sonmething with them

statement 1 is ~SET @=1, @-='2025-01-01"",

result set fromstatement 1 is “[]° - aka, an enpty set.
result_set, statenent = cur.fetchall (), cur.statenent

do sonething with result set

1st call to "nextset() wll load the result set from statenent 2,
statement 2 is “SELECT @, LENGTH('hello'), @,
result set fromstatenment 2 is "[(1, 5, '2025-01-01')] .

2nd call to "nextset() wll load the result set from statenent 3,
statenent 3 is ~SELECT @@ersion,
result set fromstatenent 3 is "[('9.2.0',)] .

3rd call to "nextset()" wll return “None as there are no nore sets,
leading to the end of the consunption process of result sets.

whi | e cur.nextset():

result_set, statenent = cur.fetchall (), cur.statenent

do sonething with result set

#
#
#
#
#
#
#
#
#
#

When the mapping is disabled (map_r esul t s=Fal se), all result sets are related to the same
statement, which is the one provided when calling execut e() . In other words, the st at enent
property does not change while result sets are consumed, which differs from when mapping is enabled,
when the st at ement property returns the statement that caused the current result set. Therefore, the
value of statement changes accordingly while the result sets are traversed.

Shortcut for consuming result sets

A fetch-related APl command shortcut is available to consume result sets, this example is equivalent to
the previously presented workflow.

sql _operation = "'""'

SET @=1, @-='2025-01-01';
SELECT @, LENGTH('hello'), @;
SELECT @@er si on;

with cnx.cursor() as cur:
cur. execut e(sql _operation, map_results=True)
for statement, result_set in cur.fetchsets():
do sonething with result set

The fetchsets() method returns a generator where each item is a 2-tuple; the first element is the
statement that caused the result set, and the second is the result set itself. If mapping is disabled,
statement will not change as result sets are consumed.

If statement is not needed, then consider this simpler option:
sql _operation = ...
with cnx.cursor() as cur:

cur.execute(...)

for _, result_set in cur.fetchsets():
do sonething with result set

9.4 Asynchronous Connectivity

Installing Connector/Python also installs the nmysql . connect or . ai o package that integrates asyncio
with the connector to allow integrating asynchronous MySQL interactions with an application.

Here are code examples that integrate mysql . connect or. ai o functionality:

Basic Usage:

from mysqgl . connector. ai o i nport connect

Connect to a MySQL server and get a cursor
cnx = await connect (user="myuser", password="mypass")

43

https://docs.python.org/3/library/asyncio.html

Usage with context managers:

cur = await cnx.cursor()

Execute a non-bl ocki ng query
await cur. execut e(" SELECT version()")

Retrieve the results of the query asynchronously
results = await cur.fetchall ()
print(results)

Cl ose cursor and connection
await cur.cl ose()
await cnx. cl ose()

Usage with context managers:

from nysqgl . connector. ai o inport connect

Connect to a MySQL server and get a cursor
async wWith await connect (user="myuser", password="nypass") as cnx
async with await cnx.cursor() as cur
Execute a non-bl ocki ng query
await cur. execut e(" SELECT version()")

Retrieve the results of the query asynchronously
results = await cur.fetchall ()
print(results)

Running Multiple Tasks Asynchronously

This example showcases how to run tasks asynchronously and the usage of to_thread, which is the
backbone to asynchronously run blocking functions:

Note

The synchronous version of this example implements coroutines instead of
following a common synchronous approach; this to explicitly demonstrate that
only awaiting coroutines does not make the code run asynchronously. Functions
included in the asyncio API must be used to achieve asynchronicity.

i nport asynci o
i nport os
inmport tine

from nysqgl . connector. ai o i nport connect

G obal variable which will help to format the job sequence out put.
DI SCLAIMER: this is an exanpl e for showcasi ng/ demo purposes

you shoul d avoi d gl obal variabl es usage for production code

gl obal i ndent

indent = 0

MySQL Connection argunents

config = {
"host": "127.0.0.1",
“user": "root",
"password": os.environ. get("MPASS', ":("),
"use_pure": True
"port": 3306
}

async def job_sleep(n):
"""Take a nap for n seconds

This job represents any generic task - it may be or not an | O task
| ncrenent indent

gl obal i ndent

of fset = "\t" * indent

indent += 1

44

Running Multiple Tasks Asynchronously

Emul ati ng a generic job/task
print (f"{of fset}START_SLEEP")
await asynci o. sl eep(n)
print(f"{of fset}END SLEEP")

return f"I slept for {n} seconds"

async def job_nysql ():
"""Connect to a MyYSQL Server and do some operations.

Run queries, run procedures, insert data, etc.

| ncrenment indent

gl obal i ndent

offset = "\t" * indent
indent += 1

MySQL operations
print (f"{of fset}START _MYSQ._OPS")
async wWith await connect(**config) as cnx:
async wWith await cnx.cursor() as cur:
await cur. execut e(" SELECT @@er si on")
res = await cur.fetchone()
time.sleep(l) # for simulating that the fetch isn't inmediate
print(f"{of fset}END MYSQL_OPS")

return server version
return res

async def job_io():
"""Emul ate an | O operati on.

“to_thread” allows to run a blocking function asynchronously.

Ref er ences:
[asyncio.to_thread]: https://docs. python.org/3/1ibrary/asynci o-task. htm #asynci o.to_t hread

Emul ati ng a native bl ocking | O procedure
def io():

"""Bl ocking | O operation."""

time. sl eep(5)

| ncrenment indent

gl obal i ndent

offset = "\t" * indent
indent += 1

Showcasi ng how a native bl ocking | O procedure can be awaited,
print(f"{offset}START | Q")

await asynci o.to_thread(io)

print(f"{offset}END | Q")

return "I aman | O operation”
async def mai n_asynchronous():
""" Runni ng tasks asynchronously.

Ref er ences:
[asynci o. gather]: https://docs. python.org/3/I1ibrary/ asynci o-task. ht m #asynci o. gat her

reset indent
gl obal i ndent
indent = 0

clock = tine.tine()

45

Running Multiple Tasks Asynchronously

~asyncio.gather()" allows to run awaitabl e objects
in the aws sequence asynchronously.\

If all awaitables are conpl eted successfully,

the result is an aggregate list of returned val ues
aws = (job_io(), job_nysqgl (), job_sleep(4))
returned_val s = await asynci o. gat her (*aws)

print(f"El apsed tine: {tine.tine() - clock:0.2f}")

The order of result values corresponds to the
order of awaitables in aws.
print(returned_vals, end="\n" * 2)

Exanpl e expected out put
———————————————————— ASYNCHRONQUS - ----------mmmmm oo -
START_| O
START_MYSQL_OPS
START_SLEEP
END_MYSQL_OPS
END_SLEEP
END_| O
El apsed time: 5.01
['l aman | O operation', ('8.3.0-comercial',), 'I slept for 4 seconds']

HH O HHH R HHHR

async def mai n_non_asynchronous()
""" Runni ng tasks non-asynchronously
print("------------------- NON- ASYNCHRONQUS - - - -------------m-- ")

reset indent
gl obal i ndent
indent = 0

clock = tine.tine()

Sequence of awaitabl e objects
aws = (job_io(), job_nysqgl (), job_sleep(4))

The |ine below this docstring is the short version of:

corol, coro2, coro3 = *aws

resl = await corol

res2 awai t cor o2

res3 = await coro3

returned_vals = [resl, res2, res3]
NOTE: Sinply awaiting a coro does not nake the code run asynchronously!
returned_vals = [await coro for coro in aws] # this will run synchronously

#
#
#
#
#
#

print(f"El apsed tine: {tine.tine() - clock:0.2f}")
print(returned_vals, end="\n")

Exanpl e expected out put
——————————————————— NON- ASYNCHRONQUS - - - -------------o--
START_| O
END_| O
START_MYSQL_OPS
END_MYSQL_OPS
START_SLEEP
END_SLEEP
El apsed time: 10.07
['l aman | O operation', ('8.3.0-comercial',), 'I slept for 4 seconds']

HH O HHH R HHHR

if __name__ =="__main__
“asyncio.run() " allows to execute a coroutine (coro’) and return the result
You cannot run a coro without it.

Ref erences
[asynci o.run]: https://docs. python.org/3/1ibrary/asynci o-runner. htm #asynci o. run
assert asynci o.run(mai n_asynchronous()) == asynci o. run(mai n_non_asynchronous())

Asynchronous MySQL Queries

It shows these three jobs running asynchronously:

» j ob_i o: Emulate an I/O operation; with to_thread to allow running a blocking function
asynchronously.

Starts first, and takes five seconds to complete so is the last job to finish.

* j ob_nysql : Connects to a MySQL server to perform operations such as queries and stored
procedures.

Starts second, and takes one second to complete so is the first job to finish.
* j ob_sl eep: Sleeps for n seconds to represent a generic task.
Starts last, and takes four seconds to complete so is the second job to finish.
Note

A lock/mutex wasn't added to the i ndent variable because multithreading isn't
used; instead the unique active thread executes all of the jobs. Asynchronous
execution is about completing other jobs while waiting for the result of an 1/10
operation.

Asynchronous MySQL Queries
This is a similar example that uses MySQL queries instead of generic jobs.
Note

While cursors are not utilized in the these examples, the principles and workflow
could apply to cursors by letting every connection object create a cursor to
operate from.

Synchronous code to create and populate hundreds of tables:

i mport os
import tinme
fromtyping inport TYPE CHECKI NG Call able, List, Tuple

from nysqgl . connector inport connect
i f TYPE_CHECKI NG

from nmysql . connect or. abstracts inport (
MySQLConnect i onAbstract ,

)

MySQL Connection arguments

config = {
"host": "127.0.0.1",
"user": "root",
"password": os.environ.get("MPASS', ":("),
"use_pure": True,
"port": 3306,
}

exec_sequence = []

def create_tabl e(
exec_seq: List[str], table_nanmes: List[str], cnx: "MySQ.Connecti onAbstract", i: int
) -> None:
"""Creates a table."""
if i >= len(tabl e_nanes):
return Fal se

exec_seq. append(f"start _{i}")
stmt = f "

Asynchronous MySQL Queries

def

) 5

def

) 5

if

CREATE TABLE | F NOT EXI STS {table_nanes[i]} (
dish_id INT(11) UNSI GNED AUTO_ | NCREMENT UNI QUE KEY,
cat egory TEXT,
di sh_name TEXT,
price FLOAT,
servi ngs | NT,
order_tinme TIME

cnx. cnd_query(f"DROP TABLE | F EXI STS {tabl e_nanes[i]}")
cnx. crmd_query(stnt)

exec_seq. append(f"end_{i}")

return True

drop_t abl e(
exec_seq: List[str], table_nanes: List[str], cnx: "M/SQ.ConnectionAbstract", i:
> None:

"""Drops a table.
if i >= len(tabl e_nanes):
return Fal se

exec_seq. append(f"start_{i}")

cnx. cnd_query(f"DROP TABLE | F EXI STS {tabl e_nanes[i]}")
exec_seq. append(f"end_{i}")

return True

mai n(

kernel : Callable[[List[str], List[str], "MySQConnectionAbstract", int], None],

tabl e_nanmes: List[str],
> Tupl e[Li st, List]:

exec_seq = []
dat abase_nanme = " TABLE_CREATOR'

wi th connect (**config) as cnx:
Create/ Setup dat abase
cnx. cnd_quer y(f" CREATE DATABASE | F NOT EXI STS {dat abase_nane}")
cnx. cnd_query(f"USE {dat abase_nane}")

Execute Kernel: Create or Delete tables
for i in range(len(table_nanes)):
kernel (exec_seq, table_nanes, cnx, i)

Show t abl es
cnx. cnd_query(" SHOW t abl es")
show_t abl es = cnx. get _rows()[0]

Return execution sequence and table nanmes retrieved with “SHOWt abl es; .
return exec_seq, show_tabl es

_nane__ == "__main__":
with numtabl es=511 -> El apsed tinme ~ 25.86

clock = tine.tine()

print_exec_seq = Fal se

num tables = 511

tabl e_names = [f"table_sync_{n}" for n in range(numtables)]

print("-------------------- SYNC CREATOR ------------mmmmmm o ")
exec_seq, show_tables = main(kernel =create_tabl e, table_nanmes=tabl e_nanes)
assert | en(show_tabl es) == num tabl es

if print_exec_seq:
print (exec_seq)

print("-------------------- SYNC DROPPER ----------ommmaoo o ")
exec_seq, show_tables = main(kernel =drop_tabl e, table_nanes=tabl e_nanes)
assert |en(show_tables) ==
if print_exec_seq:

print (exec_seq)

int

48

Asynchronous MySQL Queries

print(f"El apsed tine: {tinme.tine()

Expected output with numtables =
———————————————————— SYNC CREATOR

"start_0",
"end_0",
"start_1",
"end_1",
"start_2",
"end_2",
"start_3",
"end_3",
"start_4",
"end_4",
"start_5",
"end_5",
"start_6",
"end_6",
"start_7",
"end_7",
"start_8",
"end_8",
"start_9",
"end_9",
"start_10",
"end_10",

"start_0",
"end_0",
"start_1",
"end_1",
"start_2",
"end_2",
"start_3",
"end_3",
"start_4",
"end_4",
"start_5",
"end_5",
"start_6",
"end_6",
"start_7",
"end_7",
"start_8",
"end_8",
"start_9",
"end_9",
"start_10",
"end_10",

HHEFHFFHFFFEHFFEHFFHFFRHFFRFHRFEFREHFFRFHRFFRFEFREFREHFESEFEHFF TR

pa—

That script creates and deletes {num_tables} tables,

table_{i} before moving to table {i+1}.

- clock:0.2f}")

An asynchronous code example for the same task:

i mport asynci o
i mport os
inmport tinme

fromtyping inport TYPE CHECKI NG Call able, List, Tuple

from nmysqgl . connector. ai o i nport connect

i f TYPE_CHECKI NG

from nmysqgl . connect or. ai 0. abstracts inmport (

MySQLConnect i onAbst r act ,
)

and is fully sequential in that it creates and deletes

49

Asynchronous MySQL Queries

MySQL Connection arguments

config = {
"host": "127.0.0.1",
"user": "root",
"password": os.environ.get("MPASS', ":("),
"use_pure": True,
"port": 3306,
}

exec_sequence = []

async def create_tabl e(
exec_seq: List[str], table_nanmes: List[str], cnx: "MySQ.ConnectionAbstract", i: int
) -> None:
"""Creates a table.
if i >= len(tabl e_nanes):
return Fal se

exec_seq. append(f"start _{i}")
stmt = f"""
CREATE TABLE | F NOT EXI STS {tabl e_nanes[i]} (
dish_id INT(11) UNSI GNED AUTO_ | NCREMENT UNI QUE KEY,
cat egory TEXT,
di sh_name TEXT,
price FLOAT,
servi ngs | NT,
order_tinme TIME

await cnx.cnd_query(f"DROP TABLE | F EXI STS {tabl e_nanes[i]}")
await cnx.cnd_query(stnt)

exec_seq. append(f"end_{i}")

return True

async def drop_tabl e(
exec_seq: List[str], table_nanmes: List[str], cnx: "MySQ.ConnectionAbstract", i: int
) -> None:
"""Drops a table.
if i >= len(tabl e_nanes):
return Fal se

exec_seq. append(f"start_{i}")

await cnx.cnd_query(f"DROP TABLE | F EXI STS {tabl e_nanmes[i]}")
exec_seq. append(f"end_{i}")

return True

async def mai n_async(
kernel : Callable[[List[str], List[str], "MySQConnectionAbstract", int], None],
tabl e_nanmes: List[str],
num j obs: int = 2,
) -> Tuple[List, List]:
"""The asynchronous tables creator...
Ref er ence:
[as_conpl eted]: https://docs. python.org/3/1ibrary/asynci o-task. ht m #asynci 0. as_conpl et ed
exec_seq = []
dat abase_nanme = " TABLE_CREATOR'

Create/ Setup dat abase

No asynchronous execution is done here.

NOTE: observe usage W TH cont ext manager .

async wWith await connect(**config) as cnx:
await cnx.cnmd_query(f" CREATE DATABASE | F NOT EXI STS {dat abase_nane}")
await cnx.cnmd_query(f"USE {dat abase_nane}")

confi g["dat abase"] = dat abase_nane

Open connections

50

Asynchronous MySQL Queries

“as_conpleted” allows to run awaitable objects in the “aws™ iterable asynchronously.
NOTE: observe usage W THOUT cont ext nanager.
aws = [connect(**config) for _ in range(numj obs)]
cnxs: List["M/SQ.ConnectionAbstract"] = [
await coro for coro in asyncio.as_conpl et ed(aws)

]

Execute Kernel: Create or Delete tables

N tabl es nust be created/deleted and we can run up to ~numjobs® jobs asynchronously,
therefore we execute jobs in batches of size numjobs'.

returned_values, i = [True], O
whil e any(returned_values): # Keep running until i >= |len(table_nanes) for all jobs
Prepare coros: map connections/cursors and table-nane IDs to jobs.
aws = [
kernel (exec_seq, table_nanes, cnx, i + idx) for idx, cnx in enunerate(cnxs)

]

When i >= len(tabl e_names) coro sinply returns Fal se, el se True.
returned_values = [await coro for coro in asyncio.as_conpl et ed(aws)]
Update tabl e-name | D of fset based on the nunber of jobs

i += numj obs

Cl ose cursors

“as_conpleted” allows to run awaitable objects in the "aws™ iterable asynchronously.
for coro in asyncio.as_conpl eted([cnx.close() for cnx in cnxs]):
awai t coro

Load tabl e nanes

No asynchronous execution is done here.
async wWith await connect(**config) as cnx:
Show t abl es
await cnx.cnd_query("SHOWN t abl es")
show tables = (await cnx.get_rows())[0]

Return execution sequence and table nanmes retrieved with “SHOWt abl es; .
return exec_seq, show_tabl es

if _name__ =="__main__":
“asyncio.run() " allows to execute a coroutine (‘coro’) and return the result.
You cannot run a coro without it.

Ref erences:
[asynci o.run]: https://docs. python.org/3/1i brary/asynci o-runner. htm #asynci o. run

with numtabl es=511 and num j obs=3 -> El apsed time ~ 19.09
with numtabl es=511 and num j obs=12 -> El apsed tine ~ 13.15
clock = tinme.tine()

print_exec_seq = Fal se

num tables = 511

num j obs = 12

tabl e_names = [f"table_async_{n}" for n in range(numtabl es)]

print("-------------------- ASYNC CREATOR -------------------- ")
exec_seq, show_tables = asyncio.run(
mai n_async(kernel =create_tabl e, tabl e_nanmes=t abl e_nanmes, num j obs=num j obs)

assert |en(show_tables) == num tabl es
if print_exec_seq:
print (exec_seq)

print("-------------------- ASYNC DROPPER -------------------- ")
exec_seq, show_tables = asyncio.run(
mai n_async(kernel =drop_t abl e, tabl e_nanes=tabl e_nanes, num j obs=num j obs)
)
assert |en(show tables) == 0
if print_exec_seq:
print (exec_seq)

print(f"El apsed tine: {tine.tine() - clock:0.2f}")

Asynchronous MySQL Queries

Expected output with numtables = 11 and numjobs = 3:
———————————————————— ASYNC CREATOR --------------------

"start_2",
"start_1",
"start_0",
"end_2",
"end_0",
"end_1",
"start_5",
"start_3",
"start_4",
"end_3",
"end_5",
"end_4",
"start_8",
"start_7",
"start_6",
"end_7",
"end_8",
"end_6",
"start_10",
"start_9",
"end_9",
"end_10",

"start_1",
"start_2",
"start_0",
"end_1",
"end_2",
"end_0",
"start_3",
"start_5",
"start_4",
"end_4",
"end_5",
"end_3",
"start_6",
"start_8",
"start_7",
"end_7",
"end_6",
"end_8",
"start_10",
"start_9",
"end_9",
"end_10",

HHEFHFFHFFFEHFBFEHFFHFFFFRFEFRFEHFRFEHFFRFFRFFRFEFREFSEFFFFHF T F R E R

pa—

This output shows how the job flow isn't sequential in that up to {num_jobs} can be executed
asynchronously. The jobs are run following a batch-like approach of {num_jobs} and waits until all
terminate before launching the next batch, and the loop ends once no tables remain to create.

Performance comparison for these examples: the asynchronous implementation is about 26% faster
when using 3 jobs, and 49% faster using 12 jobs. Note that increasing the number of jobs does add
job management overhead which at some point evaporates the initial speed-up. The optimal number of
jobs is problem-dependent, and is a value determined with experience.

As demonstrated, the asynchronous version requires more code to function than the non-asynchronous
variant. Is it worth the effort? It depends on the goal as asynchronous code better optimizes
performance, such as CPU usage, whereas writing standard synchronous code is simpler.

For additional information about the asyncio module, see the official Asynchronous I/O Python
Documentation.

52

https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio.html#module-asyncio

Connector/Python Connection Pooling

9.5 Connector/Python Connection Pooling

Simple connection pooling is supported that has these characteristics:
* The nysgl . connect or . pool i ng module implements pooling.

» A pool opens a number of connections and handles thread safety when providing connections to
requesters.

» The size of a connection pool is configurable at pool creation time. It cannot be resized thereafter.

» A connection pool can be named at pool creation time. If no name is given, one is generated using
the connection parameters.

» The connection pool name can be retrieved from the connection pool or connections obtained from it.

* Itis possible to have multiple connection pools. This enables applications to support pools of
connections to different MySQL servers, for example.

» For each connection request, the pool provides the next available connection. No round-robin or
other scheduling algorithm is used. If a pool is exhausted, a Pool Er r or is raised.

« Itis possible to reconfigure the connection parameters used by a pool. These apply to connections
obtained from the pool thereafter. Reconfiguring individual connections obtained from the pool by
calling the connection conf i g() method is not supported.

Applications that can benefit from connection-pooling capability include:

» Middleware that maintains multiple connections to multiple MySQL servers and requires connections
to be readily available.

» websites that can have more “permanent” connections open to the MySQL server.
A connection pool can be created implicitly or explicitly.

To create a connection pool implicitly: Open a connection and specify one or more pool-related
arguments (pool _nane, pool _si ze). For example:

dbconfig = {
"dat abase": "test"
"user” "j oe"

}

cnx = mysql . connect or. connect (pool _nane
pool _si ze
**dbconfi g)

" nypool EH

The pool name is restricted to alphanumeric characters and the special characters ., , *, $, and #.
The pool name must be no more than pool i ng. CNX_POOL_MAXNANMESI ZE characters long (default
64).

The pool size must be greater than 0 and less than or equal to pool i ng. CNX_POOL_MAXSI ZE
(default 32).

With either the pool _nane or pool _si ze argument present, Connector/Python creates the new
pool. If the pool _namne argument is not given, the connect () call automatically generates the name,
composed from whichever of the host , port, user, and dat abase connection arguments are given,
in that order. If the pool _si ze argument is not given, the default size is 5 connections.

Subsequent calls to connect () that name the same connection pool return connections from the
existing pool. Any pool _si ze or connection parameter arguments are ignored, so the following
connect () calls are equivalent to the original connect () call shown earlier:

53

Connector/Python Django Back End

chx = mysql . connect or. connect (pool _nanme = "nypool ", pool _size = 3)
cnx = mysql . connect or. connect (pool _name = "nypool ", **dbconfi g)
chx = mysql . connect or. connect (pool _nanme = "mypool ")

Pooled connections obtained by calling connect () with a pool-related argument have a class

of Pool edMySQLConnect i on (see Section 10.4, “pooling.PooledMySQLConnection Class”).

Pool edMySQLConnect i on pooled connection objects are similar to My SQLConnect i on unpooled
connection objects, with these differences:

» To release a pooled connection obtained from a connection pool, invoke its cl ose() method, just
as for any unpooled connection. However, for a pooled connection, cl ose() does not actually close
the connection but returns it to the pool and makes it available for subsequent connection requests.

» A pooled connection cannot be reconfigured using its conf i g() method. Connection changes must
be done through the pool object itself, as described shortly.

* A pooled connection has a pool _nane property that returns the pool name.

To create a connection pool explicitly: Create a MySQLConnect i onPool object (see Section 10.3,
“pooling.MySQLConnectionPool Class”):

dbconfig = {
"dat abase": "test"
"user": "j oe"
}
cnxpool = nysql.connector. pool i ng. My'SQ.Connect i onPool (pool _nane = "nypool "
pool _size = 3

**dbconfi g)

To request a connection from the pool, use its get _connecti on() method:

cnx1
cnx2

chxpool . get _connecti on()
chxpool . get _connecti on()

When you create a connection pool explicitly, it is possible to use the pool object's set _confi g()
method to reconfigure the pool connection parameters:

dbconfig = {
"dat abase": "performance_schema"
"user": "admi n",
"password": "password"

}

cnxpool . set _confi g(**dbconfi g)

Connections requested from the pool after the configuration change use the new parameters.
Connections obtained before the change remain unaffected, but when they are closed (returned to
the pool) are reopened with the new parameters before being returned by the pool for subsequent
connection requests.

9.6 Connector/Python Django Back End

Connector/Python includes a mysql . connect or . dj ango module that provides a Django back end
for MySQL. This back end supports new features found as of MySQL 5.6 such as fractional seconds
support for temporal data types.

Django Configuration

Django uses a configuration file named set t i ngs. py that contains a variable called DATABASES (see
https://docs.djangoproject.com/en/1.5/ref/settings/#std:setting-DATABASES). To configure Django to
use Connector/Python as the MySQL back end, the example found in the Django manual can be used
as a basis:

54

https://docs.djangoproject.com/en/1.5/ref/settings/#std:setting-DATABASES

Support for MySQL Features

DATABASES = {
"default': {
" NAME' : 'user_data',
"ENG NE' : ' nysql . connector. dj ango',
'"HOST' @ '127.0.0.1",
' PORT' : 3306,
"USER : 'nysql _user',
' PASSWORD' : ' password',
"OPTIONS' : {
"autoconmit': True,
'use_oure': True,
"init_command' : "SET foo='bar';"

b
}

It is possible to add more connection arguments using OPTI ONS.

Support for MySQL Features

Django can launch the MySQL client application nysql . When the Connector/Python back end does
this, it arranges for the sql _node system variable to be set to TRADI Tl ONAL at startup.

Some MySQL features are enabled depending on the server version. For example, support for
fractional seconds precision is enabled when connecting to a server from MySQL 5.6.4 or higher.
Django's Dat eTi neFi el d is stored in a MySQL column defined as DATETI ME(6) , and Ti neFi el d is
stored as Tl MVE(6) . For more information about fractional seconds support, see Fractional Seconds in
Time Values.

Using a custom class for data type conversation is supported as a subclass of
mysgl.connector.django.base.DjangoMySQLConverter. This support was added in Connector/Python
8.0.29.

55

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sql_mode
https://dev.mysql.com/doc/refman/8.0/en/fractional-seconds.html
https://dev.mysql.com/doc/refman/8.0/en/fractional-seconds.html

56

Chapter 10 Connector/Python API Reference

Table of Contents

0 1 42T | o T 1= Tox 1 TG 1 o Yo [0 | 59
10.1.1 mysqgl.connector.connect() Methoduviiiiiiiii e 59
10.1.2 mysqgl.connector.apileVel PrOPEIYc..uiiiiuiiiiiei et e e e e e e e eanes 59
10.1.3 mysql.connector.paramstyle PrOPEItYcc..iiieiiieieeeeiiiee e e e e e e e s e e e e 60
10.1.4 mysql.connector.threadsafety Propertyoovvuiiiiiiiiii e 60
10.1.5 mysqgl.connector. VErSiON_ PrOPEITYiiuuuieiiieiieeeieeeie e e e e e e e e et e et e e e e eeenas 60
10.1.6 mysql.connector._ version _iNfo_ PrOPEItYccouuieiuiieiiieiireee e e e 60

10.2 connection.MySQLCONNECHION CIASSuiviiniiiiiieiie e e e e e e e e e e e e e e e e e aenaees 60
10.2.1 connection.MySQLConnection() CONSLIUCIONcvuueienieieiieeieeei e e e e eeanes 60
10.2.2 MySQLConnection.close() Methodc.cooiiiiiiiii e 60
10.2.3 MySQLConnection.commit() Methodccuiiiiiiiiiiiiir e 61
10.2.4 MySQLConnection.config() Methodcooiiiiiiiiii e 61
10.2.5 MySQLConnection.connect() Methodcooviiiiiiiiii e 61
10.2.6 MySQLConnection.cursor() Methodo.uiiiiiiiiii e 62
10.2.7 MySQLConnection.cmd_change_user() Methodccoovviiiiiiiiiiiccie e, 62
10.2.8 MySQLConnection.cmd_debug() Methodccooiiiiiiiiii e 63
10.2.9 MySQLConnection.cmd_init_db() Methodoviiiiiiii e 63
10.2.10 MySQLConnection.cmd_ping() Methodcoouiiiiiiiii e 63
10.2.11 MySQLConnection.cmd_process_info() Methodccooveiiiiiiiin e, 63
10.2.12 MySQLConnection.cmd_process_Kill() Methodccoovviieiiiiiiiicci e 63
10.2.13 MySQLConnection.cmd_query() Methodcooviiiiiiiiii e 63
10.2.14 MySQLConnection.cmd_query_iter() Methodcccoevviiiiiiiii e 64
10.2.15 MySQLConnection.cmd_quit() Methodccoviiiiiiiii e 64
10.2.16 MySQLConnection.cmd_refresh() Methodcccooeviiiiiiii e, 64
10.2.17 MySQLConnection.cmd_reset_connection() Methodccoovviiiiiiiiiiiiciii e 65
10.2.18 MySQLConnection.cmd_shutdown() Methodc.ccooeviiiiiiiiiii e 65
10.2.19 MySQLConnection.cmd_statistics() Methodccovviviiiiiii e, 65
10.2.20 MySQLConnection.disconnect() Methodcoovviiiiiiii i 65
10.2.21 MySQLConnection.get_row() Methodcccooiiiiiiii e 65
10.2.22 MySQLConnection.get_ rows() Methodccoviiiiiiiii e 65
10.2.23 MySQLConnection.get_server_info() Methodcccooviiiiiiiii e, 66
10.2.24 MySQLConnection.get_server_version() Methodcccooiiiiiiiiinii e, 66
10.2.25 MySQLConnection.is_connected() Methodcc.vvviiiiiiiiiiie e 66
10.2.26 MySQLConnection.isset_client_flag() Methodccooveiiiiiiiiii e, 66
10.2.27 MySQLConnection.ping() Methodcouuiiiiiiiiii e 66
10.2.28 MySQLConnection.reconnect() Methodcc.vviiiiiiiiiiii e 67
10.2.29 MySQLConnection.reset_session() Methodccovveviiiiiiiin e, 67
10.2.30 MySQLConnection.rollback() Methodccuoiiiiiiiiii e 67
10.2.31 MySQLConnection.set_charset_collation() Methodccooveiiiiiiiiii e, 67
10.2.32 MySQLConnection.set_client_flags() Methodcccooviiiiiiiiiii e, 68
10.2.33 MySQLConnection.shutdown() Methodcc.oiriiiiiiiiiiii e 68
10.2.34 MySQLConnection.start_transaction() Methodcccoeviiiiiiiiiii e, 68
10.2.35 MySQLConnection.autoComMmit PrOPEIYiviiviiiiieii e e e e e e e e e eeen 69
10.2.36 MySQLConnection.unread_reSults Propertycccvvieiieiiiieeiieieieseeieee e e e eenns 69
10.2.37 MySQLConnection.can_consume_results Propertycooeveveveiieeiiieeinneeieeeeneeennns 69
10.2.38 MySQLCoNNnection.charset PrOPEIYcc.uuiiiiiiiii e e e e 69
10.2.39 MySQLConnection.client_flags Propertyc.covevuiioeeiieeiiieie e er e e e 69
10.2.40 MySQLConnection.collation Propertyc.ueeeeiiieeieeei e eee e e e e e e e e e eens 70
10.2.41 MySQLConNnection.conNNECted PrOPEITYccuuiiiieieeie e ee e e e e e e e 70
10.2.42 MySQLConnection.connection_id PrOPertYcoeeeuiieiiieiiii e eeen e e e eeanaeeeen 70
10.2.43 MySQLConnection.converter-class Propertyc.coeveviiiiiiiieii e e e 70
10.2.44 MySQLConnection.database Propertycooveiieiiiiiii i 70

57

10.2.45 MySQLConnection.get_ warnings PrOPEItYcccuiiiiuiieiiiieiiieeeie e e e e 71

10.2.46 MySQLConnection.in_transaction PrOPErtYcc.veeiiiiiiiiieiiieeii e eae e 71
10.2.47 MySQLConnection.raise_on_warnings Propertycooveviiieiiiieiiiiieiieeii e e 71
10.2.48 MySQLConnection.server_NoSt PrOPEertYc..cieiuieiiieiiii e ee e e e e e 72
10.2.49 MySQLConnection.server_info PrOPertYc..oiiiiiieiiiieii e e e e 72
10.2.50 MySQLConnection.server_port PrOPEIYc..uiiiiiieii e e e e 72
10.2.51 MySQLConnection.server_Version ProOPertycociuiieiiiiiiiii e en e e e 72
10.2.52 MySQLConnection.sql_mode PrOPEItYccouuiieiiiieiiiieiie e e e e e e e e e e e 72
10.2.53 MySQLConnection.time_ZoNe PrOPEITYiiiiiieiiii e e e e 72
10.2.54 MySQLConnection.use_unicode PrOPEIYc..ieiiieiiiieiiiieeiiee e eeie e et e eeaneeens 72
10.2.55 MySQLConnection.unix_SOCKEt PrOPEITYociuuiiiiiieiii e e e e e 73
10.2.56 MySQLCONNECION.USEr PrOPEIY ..uiiiiiii e e e e e e aes 73
10.3 pooling.MySQLCoNNECLONPOOI CIASSccvuiiiiiieiii e 73
10.3.1 pooling.MySQLConnectioNPOOl CONSLIUCIONuuviiiiiiiieiiie e e e e eaae e 73
10.3.2 MySQLConnectionPool.add_connection() Methodccccoiiiiiiiiii e, 74
10.3.3 MySQLConnectionPool.get_connection() Methodccooiiiiiiiiiiii e, 74
10.3.4 MySQLConnectionPool.set_config() Methodccoeiiiiiiiiiiic e, 74
10.3.5 MySQLConnectionPool.pool_Name Propertyccccceeeiiiiiiiiecie e 74
10.4 pooling.PooledMySQLCONNECHON CIASS ...cc.uuiiiiiieiiieii e et e e e e e e 75
10.4.1 pooling.PooledMySQLCOoNNECtioN CONSLIUCIONiivvniiiiiieiiieeei e e e e e eaae e 75
10.4.2 PooledMySQLConnection.close() Methodcocouiiiiiiiii e, 75
10.4.3 PooledMySQLConnection.config() Methodcc.oeiiiiiiiiiii e 75
10.4.4 PooledMySQLConnection.pool_name Propertyccooceuiieiiiiiiie e 75
10.5 CUrsOr.MySQLECUISON CIASS ...uuiiuuniiiiieiiieeii e ettt e et e e e e e e e et e e et e e et e e et s e e et e eat e eatnaeeanaeees 76
10.5.1 cursor.MySQLCUIrSOr CONSIIUCTONuieniiieei e et e e e e e e e e e e e e ee e e e aneaenes 76
10.5.2 MySQLCursor.add_attribute() Methodooiiiiiiiiii e 77
10.5.3 MySQLCursor.clear_attributes() Methodccoiiiiiiiiiii e 77
10.5.4 MySQLCursor.get_attributes() Methodcouiiiiiiiiiii e, 78
10.5.5 MySQLCursor.callproc() Methodcouiiiiiiiiiii e e 78
10.5.6 MySQLCuUrsor.close() Methodcouuiiiiiiiiiiee e 78
10.5.7 MySQLCursor.execute() Methodccouuiiiiiiiii e 79
10.5.8 MySQLCursor.executemany() Methodcciiiiiiiiiiii e 79
10.5.9 MySQLCursor.fetchall() Methodc.iiiiiiii e 80
10.5.10 MySQLCursor.fetchmany() Methodooiiiiiiii e 80
10.5.11 MySQLCursor.fetchone() Methodcc.iiiiiiii e 80
10.5.12 MySQLCursor.nextset() Methodcouiiiiiiiii e 81
10.5.13 MySQLCursor.fetchsets() Methodcooiiiiiii e 81
10.5.14 MySQLCursor.fetchwarnings() Methodcooiiiieiii e 82
10.5.15 MySQLCursor.stored_results() Methodccoiiiiiiiiiii e 82
10.5.16 MySQLCursor.column_Names PIrOPEIYcccuuieiiieeiiieiiieeeie e e e e e e e e e e e e eanas 82
10.5.17 MySQLCuUrsor.descCription ProPertYc...iiiii it e e e 83
10.5.18 MySQLCUrsor.warnings PrOPEIYoiiiiiiii i e e e e e e 83
10.5.19 MySQLCUrsOr.lastrowid PrOPEItYcc.uiiiiiiieiiieii e e e e e e e aanas 84
10.5.20 MySQLCUISOr.FOWCOUNE PIOPEITYiveiie i ittt e e e e e e e e eaaeees 84
10.5.21 MySQLCUrsor.statement PrOPEITYcvuiie e e e e e e e e e e eenns 84
10.5.22 MySQLCUrsor.With_rOWS PrOPEIYcieeuieiiiieiiiee e e e e e e e e e e e e e e e eens 85
10.6 Subclasses CUIrSOr.MYSQLCUISON . ..uuuiiiteiiiieieii et e e e e e e e e e e e et e e e e e et e e et e e e aaeeaneees 85
10.6.1 cursor.MySQLCuUrsorBUffered Classcccuuiiiiiiiiiiiee e 85
10.6.2 cursor.MySQLCUISOrRAW CIASScuuiiiiieiiiiiii e e e aaas 86
10.6.3 cursor.MySQLCUISOIDICE CIASSucvvvuiiiiiieiii e e e e e e e e 86
10.6.4 cursor.MySQLCursorBufferedDiCt ClIassccccuuiiiiiiiiiiiieii i e e 86
10.6.5 cursor.MySQLCUrsOrPrepared CIasSoevuuiiiiiieiiii e e e e e 87
10.7 constantS.CHENtFIAg Classcccuuiiiiiii e e e e et e e 88
10.8 cONSLANES. FIEIATYPE CIASS ..uieuiiiiiieiii e e e e et e e e e eanas 88
10.9 constantS.SQLMOAE ClIASSuciiiuiiiiii it e e e e e e e e e et eean s 89
10.10 constants.CharaCterSet CIASSoiiiiiiiiiiiiiiii et e e e e eaenns 89
10.11 constants.RefreShOPLION CIASSccvuiiiiiiiiii e e 89
O o2 (o ¢ R= U To B (=Y o] 1o 89

58

mysql.connector Module

OBt 2 =Ty o T ot Yo [[To 11][PPN 90
10.12.2 €ITOrS.EITOr EXCEPLION ...iiiiiiiiei e e e e e e e e e e ean s 91
10.12.3 errors.DataError EXCEPLIONcouuiiii e e e e e e e e e e e e e 92
10.12.4 errors.DatabaseError EXCEPLONccuuuiiiii et e e e e e e e e ea e ees 92
10.12.5 errors.IntegrityError EXCEPLIONccvu et e e e e e e e e e eanees 92
10.12.6 errors.InterfaceError EXCEPLIONciuiiiii e e 92
10.12.7 errors.InternalError EXCEPLIONciiuniiiiii e e e e e e 92
10.12.8 errors.NotSUppOrtedError EXCEPLIONcivuiiiiiiiiii e e e e e e e e 93
10.12.9 errors.OperationalError EXCEPLIONcivuiiii e e e e e e e e et e e e e e e e eanaees 93
10.12.10 errors.POOIEITOr EXCEPLION .. ccvuiiiiiciii et e e e e e e e 93
10.12.11 errors.ProgrammingError EXCEPLIONcc.uiiiiiiiiiiieeii e e e e 93
10.12.12 errors.Warning EXCEPLIONc.uuiiiiiiii e e e e e e e e e e e e ees 93
10.12.13 errors.custom_error_exception() FUNCLONcc.ieiiiiiiiiiieii e e 93

This chapter contains the public API reference for Connector/Python. Examples should be considered
working for Python 2.7, and Python 3.1 and greater. They might also work for older versions (such as
Python 2.4) unless they use features introduced in newer Python versions. For example, exception
handling using the as keyword was introduced in Python 2.6 and will not work in Python 2.4.

Note
Python 2.7 support was removed in Connector/Python 8.0.24.

The following overview shows the nysql . connect or package with its modules. Currently, only the
most useful modules, classes, and methods for end users are documented.

nmysql . connect or

errorcode
errors
connecti on
constants
conver si on
cur sor
dbapi
| ocal es

eng

client_error

pr ot oco
utils

10.1 mysql.connector Module

The nysqgl . connect or module provides top-level methods and properties.

10.1.1 mysqgl.connector.connect() Method

This method sets up a connection, establishing a session with the MySQL server. If no arguments are
given, it uses the already configured or default values. For a complete list of possible arguments, see
Section 7.1, “Connector/Python Connection Arguments”.

A connection with the MySQL server can be established using either the
mysql . connect or. connect () method or the mysql . connect or. MySQLConnect i on() class:

cnx
cnx

nmysql . connect or. connect (user ='j oe', database="test"')
MySQLConnecti on(user='joe', database='test')

For descriptions of connection methods and properties, see Section 10.2,
“connection.MySQLConnection Class”.

10.1.2 mysqgl.connector.apilevel Property

This property is a string that indicates the supported DB API level.

59

mysql.connector.paramstyle Property

>>> mysql . connect or. api | eve
]

10.1.3 mysqgl.connector.paramstyle Property

This property is a string that indicates the Connector/Python default parameter style.

>>> nysql . connect or. paranstyl e
' pyformat"’

10.1.4 mysqgl.connector.threadsafety Property

This property is an integer that indicates the supported level of thread safety provided by Connector/
Python.

>>> nysql . connector.threadsafety
1

10.1.5 mysqgl.connector.__version__ Property

This property indicates the Connector/Python version as a string. It is available as of Connector/Python
1.1.0.

>>> nysql . connector.__version__
'1.1.0

10.1.6 mysqgl.connector.__version_info__ Property

This property indicates the Connector/Python version as an array of version components. It is available
as of Connector/Python 1.1.0.

>>> nysql . connector.__version_info__
(1, 1, o, 'a', 0)

10.2 connection.MySQLConnection Class

The MySQLConnect i on class is used to open and manage a connection to a MySQL server. It also
used to send commands and SQL statements and read the results.

10.2.1 connection.MySQLConnection() Constructor

Syntax:

cnx = MySQ.Connecti on(**kwar gs)

The MySQLConnect i on constructor initializes the attributes and when at least one argument is
passed, it tries to connect to the MySQL server.

For a complete list of arguments, see Section 7.1, “Connector/Python Connection Arguments”.

10.2.2 MySQLConnection.close() Method
Syntax:
cnx. cl ose()

cl ose() is a synonym for di sconnect () . See Section 10.2.20, “MySQLConnection.disconnect()
Method”.

60

MySQLConnection.commit() Method

For a connection obtained from a connection pool, cl ose() does not actually close it but returns it
to the pool and makes it available for subsequent connection requests. See Section 9.5, “Connector/
Python Connection Pooling”.

10.2.3 MySQLConnection.commit() Method

This method sends a COVM T statement to the MySQL server, committing the current transaction.
Since by default Connector/Python does not autocommit, it is important to call this method after every
transaction that modifies data for tables that use transactional storage engines.

>>> cursor. execute(" | NSERT | NTO enpl oyees (first_nane) VALUES (%), (%)", ('Jane', 'Mary'))
>>> cnx. commit ()

To roll back instead and discard modifications, see the rollback() method.

10.2.4 MySQLConnection.config() Method

Syntax:

cnx. confi g(**kwar gs)

Configures a MySQLConnect i on instance after it has been instantiated. For a complete list of possible
arguments, see Section 7.1, “Connector/Python Connection Arguments”.

Arguments:
* kwar gs: Connection arguments.
You could use the confi g() method to change (for example) the user name, then call r econnect ().

Example:

cnx = mysql . connector. connect (user='joe', database="test')
Connected as 'joe'

cnx. config(user='jane')

chx. reconnect ()
Now connected as 'jane'

For a connection obtained from a connection pool, conf i g() raises an exception. See Section 9.5,
“Connector/Python Connection Pooling”.

10.2.5 MySQLConnection.connect() Method
Syntax:
MySQLConnect i on. connect (**kwar gs)

This method sets up a connection, establishing a session with the MySQL server. If no arguments are
given, it uses the already configured or default values. For a complete list of possible arguments, see
Section 7.1, “Connector/Python Connection Arguments”.

Arguments:
e kwar gs: Connection arguments.

Example:

cnx = MySQ.Connecti on(user="'joe', database="test')

For a connection obtained from a conection pool, the connection object class is
Pool edMySQLConnect i on. A pooled connection differs from an unpooled connection as described in
Section 9.5, “Connector/Python Connection Pooling”.

61

MySQLConnection.cursor() Method

10.2.6 MySQLConnection.cursor() Method

Syntax:

cursor = cnx.cursor([arg=val ue[, arg=value]...])

This method returns a My SQLCur sor () object, or a subclass of it depending on the passed
arguments. The returned object is a cur sor . Cur sor Base instance. For more information about
cursor objects, see Section 10.5, “cursor.MySQLCursor Class”, and Section 10.6, “Subclasses
cursor.MySQLCursor”.

Arguments may be passed to the cur sor () method to control what type of cursor to create:

» If buf f er ed is Tr ue, the cursor fetches all rows from the server after an operation is executed. This
is useful when queries return small result sets. buf f er ed can be used alone, or in combination with
the di cti onary argument.

buf f er ed can also be passed to connect () to set the default buffering mode for all cursors
created from the connection object. See Section 7.1, “Connector/Python Connection Arguments”.

For information about the implications of buffering, see Section 10.6.1,
“cursor.MySQLCursorBuffered Class”.

« If rawis Tr ue, the cursor skips the conversion from MySQL data types to Python types when
fetching rows. A raw cursor is usually used to get better performance or when you want to do the
conversion yourself.

r awcan also be passed to connect () to set the default raw mode for all cursors created from the
connection object. See Section 7.1, “Connector/Python Connection Arguments”.

o Ifdi ctionary is Tr ue, the cursor returns rows as dictionaries. This argument is available as of
Connector/Python 2.0.0.

» If preparedis Tr ue, the cursor is used for executing prepared statements. This argument is
available as of Connector/Python 1.1.2. The C extension supports this as of Connector/Python
8.0.17.

e The cursor_cl ass argument can be used to pass a class to use for instantiating a new cursor. It
must be a subclass of cur sor . Cur sor Base.

The returned object depends on the combination of the arguments. Examples:
* If not buffered and not raw: My SQLCur sor

« If buffered and not raw: My SQLCur sor Buf f er ed

« If not buffered and raw: My SQLCur sor Raw

o If buffered and raw: My SQLCur sor Buf f er edRaw

10.2.7 MySQLConnection.cmd_change _user() Method

Changes the user using user nane and passwor d. It also causes the specified dat abase to become
the default (current) database. It is also possible to change the character set using the char set
argument.

Syntax:

cnx. cnd_change_user (usernanme='"', password='', database=""', charset=33)

Returns a dictionary containing the OK packet information.

62

MySQLConnection.cmd_debug() Method

10.2.8 MySQLConnection.cmd_debug() Method

Instructs the server to write debugging information to the error log. The connected user must have the
SUPER privilege.

Returns a dictionary containing the OK packet information.

10.2.9 MySQLConnection.cmd_init_db() Method
Syntax:
cnx. cnd_i ni t _db(db_nane)

This method makes specified database the default (current) database. In subsequent queries, this
database is the default for table references that include no explicit database qualifier.

Returns a dictionary containing the OK packet information.

10.2.10 MySQLConnection.cmd_ping() Method

Checks whether the connection to the server is working.
This method is not to be used directly. Use ping() or is_connected() instead.

Returns a dictionary containing the OK packet information.

10.2.11 MySQLConnection.cmd_process_info() Method

This method raises the NotSupportedError exception. Instead, use the SHOW PROCESSL| ST statement
or query the tables found in the database | NFORVATI ON_SCHENA.

I Deprecation

This MySQL Server functionality is deprecated.

10.2.12 MySQLConnection.cmd_process_kill() Method
Syntax:
cnx. cd_process_ki | | (nysql _pi d)
Deprecation
I This MySQL Server functionality is deprecated.

Asks the server to kill the thread specified by nysql _pi d. Although still available, it is better to use the
Kl LL SQL statement.

Returns a dictionary containing the OK packet information.

The following two lines have the same effect:

>>> cnx. cnd_process_kil | (123)
>>> cnx. cnd_query(' KILL 123")

10.2.13 MySQLConnection.cmd_query() Method

Syntax:

cnx. cnd_quer y(st at enent)

63

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_super

MySQLConnection.cmd_query_iter() Method

This method sends the given st at enent to the MySQL server and returns a result. To send multiple
statements, use the cmd_query_iter() method instead.

The returned dictionary contains information depending on what kind of query was executed. If the
query is a SELECT statement, the result contains information about columns. Other statements return a
dictionary containing OK or EOF packet information.

Errors received from the MySQL server are raised as exceptions. An | nt er f aceEr r or is raised when
multiple results are found.

Returns a dictionary.

10.2.14 MySQLConnection.cmd_query_iter() Method

Syntax:

chx.cnd_query_iter(statenent)

Similar to the cmd_query() method, but returns a generator object to iterate through results.
Use cnd_query_iter () when sending multiple statements, and separate the statements with
semicolons.

The following example shows how to iterate through the results after sending multiple statements:

statement = ' SELECT 1; |INSERT INTO t1 VALUES (); SELECT 2'
for result in cnx.cnd_query_iter(statenent):
if '"colums' in result:
colums = resul t['col ums']
rows = cnx.get_rows()
el se:
do sonething useful with I NSERT result

Returns a generator object.

10.2.15 MySQLConnection.cmd_quit() Method

This method sends a QUI T command to the MySQL server, closing the current connection. Since there
is no response from the MySQL server, the packet that was sent is returned.

10.2.16 MySQLConnection.cmd_refresh() Method

Syntax:

cnx. cnd_r ef resh(opti ons)

Deprecation
This MySQL Server functionality is deprecated.

This method flushes tables or caches, or resets replication server information. The connected user
must have the RELOAD privilege.

The opt i ons argument should be a bitmask value constructed using constants from the
const ant s. Ref reshOpt i on class.

For a list of options, see Section 10.11, “constants.RefreshOption Class”.

Example:

>>> from nysqgl . connector inport RefreshQOption
>>> refresh = RefreshOption. LOG | RefreshQOpti on. THREADS
>>> cnx. cnd_refresh(refresh)

64

https://dev.mysql.com/doc/refman/8.0/en/select.html

MySQLConnection.cmd_reset_connection() Method

10.2.17 MySQLConnection.cmd_reset_connection() Method

Syntax:

cnx. cnd_reset _connecti on()

Resets the connection by sending a COM RESET _CONNECTI ON command to the server to clear the
session state.

This method permits the session state to be cleared without reauthenticating. For MySQL servers older
than 5.7.3 (when COM RESET _CONNECTI ON was introduced), the r eset _sessi on() method can be
used instead. That method resets the session state by reauthenticating, which is more expensive.

This method was added in Connector/Python 1.2.1.

10.2.18 MySQLConnection.cmd_shutdown() Method
Deprecation
I This MySQL Server functionality is deprecated.
Asks the database server to shut down. The connected user must have the SHUTDOWN privilege.

Returns a dictionary containing the OK packet information.

10.2.19 MySQLConnection.cmd_statistics() Method

Returns a dictionary containing information about the MySQL server including uptime in seconds and
the number of running threads, questions, reloads, and open tables.

10.2.20 MySQLConnection.disconnect() Method

This method tries to send a QUI T command and close the socket. It raises no exceptions.
MySQLConnect i on. cl ose() is a synonymous method name and more commonly used.

To shut down the connection without sending a QUI T command first, use shut down() .

10.2.21 MySQLConnection.get_row() Method

This method retrieves the next row of a query result set, returning a tuple.
The tuple returned by get _r ow() consists of:
* The row as a tuple containing byte objects, or None when no more rows are available.

» EOF packet information as a dictionary containing st at us_f | ag and war ni ng_count , or None
when the row returned is not the last row.

The get _row() method is used by MySQLCursor to fetch rows.

10.2.22 MySQLConnection.get_rows() Method

Syntax:
chx. get _r ows(count =None)
This method retrieves all or remaining rows of a query result set, returning a tuple containing the rows

as sequences and the EOF packet information. The count argument can be used to obtain a given
number of rows. If count is not specified or is None, all rows are retrieved.

65

MySQLConnection.get_server_info() Method

The tuple returned by get _r ows() consists of:

A list of tuples containing the row data as byte objects, or an empty list when no rows are available.
» EOF packet information as a dictionary containing st at us_f | ag and war ni ng_count .

An | nterfaceError is raised when all rows have been retrieved.

MySQLCursor uses the get _rows() method to fetch rows.

Returns a tuple.

10.2.23 MySQLConnection.get_server_info() Method

Deprecation

This method has been deprecated as of 9.3.0. Use the property method
Section 10.2.49, “MySQLConnection.server_info Property” instead.

This method returns the MySQL server information verbatim as a string, for example ' 5. 6. 11-1 og' ,
or None when not connected.

10.2.24 MySQLConnection.get_server_version() Method
Deprecation

This method has been deprecated as of 9.3.0. Use the property method
Section 10.2.51, “MySQLConnection.server_version Property” instead.

This method returns the MySQL server version as a tuple, or None when not connected.

10.2.25 MySQLConnection.is_connected() Method

Deprecation

This method has been deprecated as of 9.3.0. Use the property method
Section 10.2.41, “MySQLConnection.connected Property” instead.

Reports whether the connection to MySQL Server is available.

This method checks whether the connection to MySQL is available using the ping() method, but unlike
ping(),is_connected() returns Tr ue when the connection is available, Fal se otherwise.

10.2.26 MySQLConnection.isset_client_flag() Method
Syntax:
cnx.isset_client_flag(flag)

This method returns Tr ue if the client flag was set, Fal se otherwise.

10.2.27 MySQLConnection.ping() Method

Syntax:

cnx. pi ng(reconnect =Fal se, attenpts=1, del ay=0)
Check whether the connection to the MySQL server is still available.

When r econnect is setto Tr ue, one or more at t enpt s are made to try to reconnect to the MySQL
server, and these options are forwarded to the reconnect()>method. Use the del ay argument
(seconds) if you want to wait between each retry.

66

MySQLConnection.reconnect() Method

When the connection is not available, an | nt er f aceEr r or is raised. Use the is_connected() method
to check the connection without raising an error.

Raises | nt er f aceEr r or on errors.

10.2.28 MySQL Connection.reconnect() Method

Syntax:
chx. reconnect (attenpts=1, del ay=0)
Attempt to reconnect to the MySQL server.

The argument at t enpt s specifies the number of times a reconnect is tried. The del ay argument is
the number of seconds to wait between each retry.

You might set the number of attempts higher and use a longer delay when you expect the MySQL
server to be down for maintenance, or when you expect the network to be temporarily unavailable.

10.2.29 MySQLConnection.reset_session() Method

Syntax:

chx. reset _session(user_vari abl es = None, session_variabl es = None)

Resets the connection by reauthenticating to clear the session state. user vari abl es, if given, is a
dictionary of user variable names and values. sessi on_vari abl es, if given, is a dictionary of system
variable names and values. The method sets each variable to the given value.

Example:

user_variables = {'varl': "1', 'var2': '10'}
session_variables = {'wait_tineout': 100000, 'sql_node': ' TRADI TlI ONAL'}
sel f.cnx. reset _sessi on(user_vari abl es, session_vari abl es)

This method resets the session state by reauthenticating. For MySQL servers 5.7 or higher, the
cnd_reset_connection() method is a more lightweight alternative.

This method was added in Connector/Python 1.2.1.

10.2.30 MySQLConnection.rollback() Method

This method sends a ROLLBACK statement to the MySQL server, undoing all data changes from the
current transaction. By default, Connector/Python does not autocommit, so it is possible to cancel
transactions when using transactional storage engines such as | nnoDB.

>>> cursor. execute("| NSERT | NTO enpl oyees (first_nanme) VALUES (%), (%)", ('Jane', 'Mary'))
>>> cnx. rol | back()

To commit modifications, see the commit() method.

10.2.31 MySQLConnection.set_charset_collation() Method

Syntax:

cnx. set _charset_col | ati on(charset =None, col | ati on=None)

This method sets the character set and collation to be used for the current connection. The char set
argument can be either the name of a character set, or the numerical equivalent as defined in
const ant s. Char act er Set .

When col | ati on is None, the default collation for the character set is used.

67

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_commit

MySQLConnection.set_client_flags() Method

In the following example, we set the character setto | ati n1 and the collation to
[ati nl_swedi sh_ci (the default collation for: | ati n1):

>>> cnx = nysgl.connector. connect (user='scott"')
>>> cnx. set _charset _collation('latinl")

Specify a given collation as follows:

>>> cnx = nysql.connector. connect (user='scott"')
>>> cnx.set_charset_collation('latinl', 'latinl_general_ci')

10.2.32 MySQLConnection.set_client_flags() Method

Deprecation

This method has been deprecated as of 9.3.0. Use the property method
Section 10.2.39, “MySQLConnection.client_flags Property” instead.

Syntax:

cnx.set_client_flags(flags)

This method sets the client flags to use when connecting to the MySQL server, and returns the new
value as an integer. The f | ags argument can be either an integer or a sequence of valid client flag
values (see Section 10.7, “constants.ClientFlag Class”).

If f | ags is a sequence, each item in the sequence sets the flag when the value is positive or unsets it
when negative. For example, to unset LONG_FLAG and set the FOUND RO\ flags:

>>> from nysql . connector.constants inport ClientFlag
>>> cnx.set_client_flags([CientFl ag. FOUND ROAS, -dientFl ag. LONG FLAG)
>>> cnx. reconnect ()

Note

Client flags are only set or used when connecting to the MySQL server. It is
therefore necessary to reconnect after making changes.

10.2.33 MySQL Connection.shutdown() Method

This method closes the socket. It raises no exceptions.

Unlike di sconnect (), shut down() closes the client connection without attempting to send a QUI T
command to the server first. Thus, it will not block if the connection is disrupted for some reason such
as network failure.

shut down() was added in Connector/Python 2.0.1.

10.2.34 MySQLConnection.start_transaction() Method

This method starts a transaction. It accepts arguments indicating whether to use a consistent snapshot,
which transaction isolation level to use, and the transaction access mode:

cnx. start_transacti on(consi st ent _snapshot =bool ,
i sol ation_I evel =l evel ,
readonl y=access_node)

The default consi st ent _snapshot value is Fal se. If the value is Tr ue, Connector/Python sends
W TH CONSI STENT SNAPSHOT with the statement. MySQL ignores this for isolation levels for which
that option does not apply.

68

MySQLConnection.autocommit Property

The defaulti sol ati on_| evel value is None, and permitted values are ' READ UNCOWM TTED' ,
' READ COW TTED ,' REPEATABLE READ , and' SERI ALI ZABLE' . Ifthei sol ati on_| evel
value is None, no isolation level is sent, so the default level applies.

The r eadonl y argument can be Tr ue to start the transaction in READ ONLY mode or Fal se to start

it in READ WRI TE mode. If readonl y is omitted, the server's default access mode is used. For details
about transaction access mode, see the description for the START TRANSACTI ON statement at START
TRANSACTION, COMMIT, and ROLLBACK Statements. If the server is older than MySQL 5.6.5, it
does not support setting the access mode and Connector/Python raises a Val ueErr or .

Invoking st art _transacti on() raises a Progr anm ngError if invoked while a transaction is
currently in progress. This differs from executing a START TRANSACTI ON SQL statement while a
transaction is in progress; the statement implicitly commits the current transaction.

To determine whether a transaction is active for the connection, use the in_transaction property.

start _transaction() was added in MySQL Connector/Python 1.1.0. The r eadonl y argument
was added in Connector/Python 1.1.5.

10.2.35 MySQL Connection.autocommit Property

This property can be assigned a value of Tr ue or Fal se to enable or disable the autocommit feature
of MySQL. The property can be invoked to retrieve the current autocommit setting.

Note

Autocommit is disabled by default when connecting through Connector/Python.
This can be enabled using the aut oconmi t connection parameter.

When the autocommit is turned off, you must commit transactions when using transactional storage
engines such as | nnoDB or NDBCl ust er .

>>> cnx. aut ocommi t

Fal se

>>> cnx. autocommt = True
>>> cnx. aut ocommi t

Tr ue

10.2.36 MySQLConnection.unread_results Property

Indicates whether there is an unread result. It is set to Fal se if there is not an unread result, otherwise
Tr ue. This is used by cursors to check whether another cursor still needs to retrieve its result set.

Do not set the value of this property, as only the connector should change the value. In other words,
treat this as a read-only property.

10.2.37 MySQLConnection.can_consume_results Property

This property indicates the value of the consune_r esul t s connection parameter that controls
whether result sets produced by queries are automatically read and discarded. See Section 7.1,
“Connector/Python Connection Arguments”.

This method was added in Connector/Python 2.1.1.

10.2.38 MySQLConnection.charset Property

This property returns a string indicating which character set is used for the connection, whether or not it
is connected.

10.2.39 MySQL Connection.client_flags Property

69

https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html

MySQLConnection.collation Property

Syntax:

>>> cnx.client_flags=flags
>>> cnx. clieng_flags

This property sets the client flags to use when connecting to the MySQL server, and returns the set
value as an integer. The f | ags value can be either an integer or a sequence of valid client flag values
(see Section 10.7, “constants.ClientFlag Class”).

If f | ags is a sequence, each item in the sequence sets the flag when the value is positive or unsets it
when negative. For example, to unset LONG_FLAGand set the FOUND _ROWS flags:

>>> from nysql . connector.constants inport ClientFlag
>>> cnx.client_flags=[CientFl ag. FOUND_ ROA5, -ClientFlag. LONG FLAG
>>> cnx. reconnect ()

Note

Client flags are only set or used when connecting to the MySQL server. It is
therefore necessary to reconnect after making changes.

10.2.40 MySQLConnection.collation Property

This property returns a string indicating which collation is used for the connection, whether or not it is
connected.

10.2.41 MySQLConnection.connected Property

Reports whether the connection to MySQL Server is available.

This read-only property checks whether the connection to MySQL is available using the ping() method,;
but unlike pi ng(), connect ed returns Tr ue when the connection is available, and Fal se otherwise.

10.2.42 MySQLConnection.connection_id Property

This property returns the integer connection ID (thread ID or session ID) for the current connection or
None when not connected.

10.2.43 MySQLConnection.converter-class Property

This property sets and returns the converter class to use when configuring the connection.

get the current converter class being used
print (cnx.converter_cl ass)
>> <cl ass ' nysql . connector. conversi on. \ySQLConverter' >

cl ass Test Converter(M/SQ.Convert erBase):

set the custom converter class
chnx. converter_class = Test Converter
print (cnx.converter_cl ass)

>> <class ' __main__. Test Converter'>

10.2.44 MySQLConnection.database Property

This property sets the current (default) database by executing a USE statement. The property can also
be used to retrieve the current database name.

"test'
"nysql’

>>> cnx. dat abase
>>> cnx. dat abase
>>> cnx. dat abase

u' mysql'

70

MySQLConnection.get_warnings Property

Returns a string.

10.2.45 MySQLConnection.get_warnings Property

This property can be assigned a value of Tr ue or Fal se to enable or disable whether warnings should
be fetched automatically. The default is Fal se (default). The property can be invoked to retrieve the
current warnings setting.

Fetching warnings automatically can be useful when debugging queries. Cursors make warnings
available through the method MySQLCursor.fetchwarnings().

>>> cnx. get _warni ngs = True
>>> cursor. execute(' SELECT "a"+1")
>>> cursor.fetchall ()

[(1.0,)]

>>> cursor. f et chwar ni ngs()
[(u" Warning', 1292, u"Truncated incorrect DOUBLE value: 'a'")]

Returns Tr ue or Fal se.

10.2.46 MySQLConnection.in_transaction Property

This property returns Tr ue or Fal se to indicate whether a transaction is active for the connection. The
value is Tr ue regardless of whether you start a transaction using the st art _transacti on() API
call or by directly executing an SQL statement such as START TRANSACTI ON or BEG N.

>>> cnx. start_transaction()
>>> cnx.in_transaction
True

>>> cnx. conmit ()

>>> cnx.in_transaction

Fal se

i n_transacti on was added in MySQL Connector/Python 1.1.0.

10.2.47 MySQLConnection.raise_on_warnings Property

This property can be assigned a value of Tr ue or Fal se to enable or disable whether warnings should
raise exceptions. The default is Fal se (default). The property can be invoked to retrieve the current
exceptions setting.

Setting r ai se_on_war ni ngs also sets get _war ni ngs because warnings need to be fetched so they
can be raised as exceptions.

Note

You might always want to set the SQL mode if you would like to have the
MySQL server directly report warnings as errors (see Section 10.2.52,
“MySQLConnection.sql_mode Property”). It is also good to use transactional
engines so transactions can be rolled back when catching the exception.

Result sets needs to be fetched completely before any exception can be raised. The following example
shows the execution of a query that produces a warning:

>>> cnx. rai se_on_warni ngs = True
>>> cursor. execute(' SELECT "a"+1")
>>> cursor. fetchall ()

mysql . connector. errors. DataError: 1292: Truncated incorrect DOUBLE val ue: 'a

Returns Tr ue or Fal se.

71

https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html

MySQLConnection.server_host Property

10.2.48 MySQLConnection.server_host Property

This read-only property returns the host name or IP address used for connecting to the MySQL server.

Returns a string.

10.2.49 MySQLConnection.server_info Property

This read-only property returns the MySQL server information verbatim as a string: for example
8. 4. 0-1 og, or None when not connected.

10.2.50 MySQLConnection.server_port Property

This read-only property returns the TCP/IP port used for connecting to the MySQL server.

Returns an integer.

10.2.51 MySQLConnection.server_version Property

This read-only property returns the MySQL server version as a tuple, or None when not connected.

10.2.52 MySQLConnection.sql_mode Property

This property is used to retrieve and set the SQL Modes for the current connection. The value should
be a list of different modes separated by comma (*,"), or a sequence of modes, preferably using the
const ant s. SQLMode class.

To unset all modes, pass an empty string or an empty sequence.

>>> cnx. sql _nmobde = ' TRADI TI ONAL, NO_ENG NE_SUBSTI TUTI ON

>>> cnx. sql _nmode. split(',")

[u' STRICT_TRANS_TABLES', u' STRICT_ALL_TABLES' , u' NO_ZERO | N DATE',
u' NO_ZERO DATE', u' ERROR_FOR DI VI SI ON_BY_ZERO , u' TRADI TI ONAL',

u' NO_AUTO _CREATE_USER , u' NO_ENG NE_SUBSTI TUTI ON]

>>> from nmysql . connector. constants inport SQLMdbde

>>> cnx. sql _nbde = [SQLMbde. NO_ZERO DATE, SQ.Mode. REAL_AS FLOAT]
>>> cnx. sql _node

u' REAL_AS_FLOAT, NO_ZERO DATE'

Returns a string.

10.2.53 MySQLConnection.time_zone Property

This property is used to set or retrieve the time zone session variable for the current connection.

>>> cnx.time_zone = ' +00: 00

>>> cursor = cnx.cursor()

>>> cursor. execute(' SELECT NON)') ; cursor. fetchone()
(datetinme.datetine(2012, 6, 15, 11, 24, 36),)

>>> cnx.tinme_zone = '-09: 00

>>> cursor. execute(' SELECT NON)') ; cursor.fetchone()
(datetine.dateti ne(2012, 6, 15, 2, 24, 44),)

>>> cnx. tine_zone

u' -09: 00

Returns a string.
10.2.54 MySQLConnection.use_unicode Property

This property sets and returns whether the connection uses Unicode with the value Tr ue or Fal se.

72

MySQLConnection.unix_socket Property

gets whether the connector returns string fields as uni code or not
print (cnx. use_uni code)
>> True

set or update use_uni code property
chx. use_uni code = Fal se

print (cnx. use_uni code)

>> Fal se

10.2.55 MySQLConnection.unix_socket Property
This read-only property returns the Unix socket file for connecting to the MySQL server.

Returns a string.

10.2.56 MySQLConnection.user Property
This read-only property returns the user name used for connecting to the MySQL server.

Returns a string.

10.3 pooling.MySQLConnectionPool Class

This class provides for the instantiation and management of connection pools.

10.3.1 pooling.MySQLConnectionPool Constructor

Syntax:

MySQLConnect i onPool (pool _nane=None
pool _si ze=5
pool _reset_sessi on=True
**kwar gs)

This constructor instantiates an object that manages a connection pool.
Arguments:

e pool _nane: The pool name. If this argument is not given, Connector/Python automatically
generates the name, composed from whichever of the host , port, user, and dat abase
connection arguments are given in kwar gs, in that order.

It is not an error for multiple pools to have the same name. An application that must distinguish pools
by their pool _nane property should create each pool with a distinct name.

» pool _si ze: The pool size. If this argument is not given, the default is 5.

* pool reset sessi on: Whether to reset session variables when the connection is returned to the
pool. This argument was added in Connector/Python 1.1.5. Before 1.1.5, session variables are not
reset.

* kwar gs: Optional additional connection arguments, as described in Section 7.1, “Connector/Python
Connection Arguments”.

Example:
dbconfig = {
"dat abase": "test"
L—, "j oe",
}
cnxpool = nysql . connector. pool i ng. My'SQ_Connect i onPool (pool _nane = "nypool "
pool _size = 3

**dbconfi g)

73

MySQLConnectionPool.add_connection() Method

10.3.2 MySQLConnectionPool.add_connection() Method

Syntax:

cnxpool . add_connecti on(cnx = None)

This method adds a new or existing My SQLConnect i on to the pool, or raises a Pool Err or if the pool
is full.

Arguments:

e cnx: The MySQLConnect i on object to be added to the pool. If this argument is missing, the pool
creates a new connection and adds it.

Example:

cnxpool . add_connecti on() # add new connection to poo
cnxpool . add_connecti on(cnx) # add exi sting connection to poo

10.3.3 MySQLConnectionPool.get_connection() Method
Syntax:
chxpool . get _connecti on()

This method returns a connection from the pool, or raises a Pool Er r or if no connections are
available.

Example:

chx = cnxpool . get _connecti on()

10.3.4 MySQLConnectionPool.set_config() Method
Syntax:
cnxpool . set _confi g(**kwar gs)

This method sets the configuration parameters for connections in the pool. Connections requested
from the pool after the configuration change use the new parameters. Connections obtained before the
change remain unaffected, but when they are closed (returned to the pool) are reopened with the new
parameters before being returned by the pool for subsequent connection requests.

Arguments:

* kwar gs: Connection arguments.

Example:

dbconfig = {
"dat abase": "performance_schema"
"user": "adm n",
"password": "password"

}

cnxpool . set _confi g(**dbconfi g)

10.3.5 MySQLConnectionPool.pool_name Property

Syntax:

chxpool . pool _nane

This property returns the connection pool name.

74

pooling.PooledMySQLConnection Class

Example:

nane = cnxpool . pool _nane

10.4 pooling.PooledMySQLConnection Class

This class is used by MySQLConnect i onPool to return a pooled connection instance. It is also the
class used for connections obtained with calls to the connect () method that name a connection pool
(see Section 9.5, “Connector/Python Connection Pooling”).

Pool edMySQLConnect i on pooled connection objects are similar to My SQLConnect i on unpooled
connection objects, with these differences:

» To release a pooled connection obtained from a connection pool, invoke its cl ose() method, just
as for any unpooled connection. However, for a pooled connection, cl ose() does not actually close
the connection but returns it to the pool and makes it available for subsequent connection requests.

» A pooled connection cannot be reconfigured using its conf i g() method. Connection changes must
be done through the pool object itself, as described by Section 9.5, “Connector/Python Connection
Pooling”.

» A pooled connection has a pool _nane property that returns the pool name.

10.4.1 pooling.PooledMySQLConnection Constructor
Syntax:
Pool edMySQLConnect i on(cnxpool , cnx)

This constructor takes connection pool and connection arguments and returns a pooled connection. It
is used by the MySQLConnect i onPool class.

Arguments:
» cnxpool : AMySQLConnect i onPool instance.
* cnx: AMySQLConnect i on instance.

Example:

pcnx = nysql . connect or. pool i ng. Pool edMySQ.Connect i on(cnxpool , cnx)

10.4.2 PooledMySQLConnection.close() Method
Syntax:
cnx. cl ose()
Returns a pooled connection to its connection pool.

For a pooled connection, cl ose() does not actually close it but returns it to the pool and makes it
available for subsequent connection requests.

If the pool configuration parameters are changed, a returned connection is closed and reopened with
the new configuration before being returned from the pool again in response to a connection request.

10.4.3 PooledMySQLConnection.config() Method

For pooled connections, the conf i g() method raises a Pool Er r or exception. Configuration for
pooled connections should be done using the pool object.

10.4.4 PooledMySQLConnection.pool_name Property

75

cursor.MySQLCursor Class

Syntax:
cnx. pool _nane
This property returns the name of the connection pool to which the connection belongs.

Example:

chx = cnxpool . get _connecti on()
name = cnx. pool _nane

10.5 cursor.MySQLCursor Class

The MySQLCur sor class instantiates objects that can execute operations such as SQL statements.
Cursor objects interact with the MySQL server using a MySQLConnect i on object.

To create a cursor, use the cur sor () method of a connection object:

i mport nysql . connect or

cnx = mysql . connect or. connect (dat abase="wor| d')
cursor = cnx.cursor()

Several related classes inherit from My SQLCur sor . To create a cursor of one of these types, pass the
appropriate arguments to cur sor () :

e MySQL.Cur sor Buf f er ed creates a buffered cursor. See Section 10.6.1,
“cursor.MySQLCursorBuffered Class”.

cursor = cnx. cursor (buffered=True)

* MySQLCur sor Raw creates a raw cursor. See Section 10.6.2, “cursor.MySQLCursorRaw Class”.

cursor = cnx.cursor (raw=True)

 MySQ.Cur sor Di ct creates a cursor that returns rows as dictionaries. See Section 10.6.3,
“cursor.MySQLCursorDict Class”.

cursor = cnx. cursor (dictionary=True)

« MySQLCur sor Buf f eredDi ct creates a buffered cursor that returns rows as dictionaries. See
Section 10.6.4, “cursor.MySQLCursorBufferedDict Class”.

cursor = cnx.cursor(dictionary=True, buffered=True)

* MySQ.Cur sor Pr epar ed creates a cursor for executing prepared statements. See Section 10.6.5,
“cursor.MySQLCursorPrepared Class”.

cursor = cnx. cursor (prepared=True)

10.5.1 cursor.MySQLCursor Constructor

In most cases, the MySQLConnect i on cur sor () method is used to instantiate a My SQLCur sor
object:

i nport nysqgl . connect or

cnx = nysql . connector. connect (dat abase="wor | d")
cursor = cnx.cursor()

It is also possible to instantiate a cursor by passing a My SQL.Connect i on object to My SQLCur sor :

i mport nysql . connect or
from nmysql . connector. cursor inport MySQLCursor

76

MySQLCursor.add_attribute() Method

cnx = mysql . connect or. connect (dat abase="wor| d')
cursor = MySQLCur sor (cnx)

The connection argument is optional. If omitted, the cursor is created but its execut e() method raises
an exception.

10.5.2 MySQLCursor.add_attribute() Method

Syntax:

cursor.add_attribute(name, val ue)
Adds a new named query attribute to the list, as part of MySQL server's Query Attributes functionality.

name: The name must be a string, but no other validation checks are made; attributes are sent as is to
the server and errors, if any, will be detected and reported by the server.

val ue: a value converted to the MySQL Binary Protocol, similar to how prepared statement
parameters are converted. An error is reported if the conversion fails.

Query attributes must be enabled on the server, and are disabled by default. A warning is logged when
setting query attributes server connection that does not support them. See also Prerequisites for Using
Query Attributes for enabling the query_attributes MySQL server component.

Example query attribute usage:

Each invocation of “add_attribute nethod will add a new query attri bute:
cur.add_attribute("foo", 2)
cur. execut e("SELECT first_nane, |ast_name FROM clients")
The query above sent attibute "foo" with value 2.

cur.add_attribute(*("bar", "3"))
cur. execut e("SELECT * FROM products WHERE price < ?", 10)
The query above sent attributes ("foo", 2) and ("bar", "3").

nmy_attributes = [("page_nanme", "root"), ("previous_page", "login")]
for attribute_tuple in my_attributes:
cur.add_attribute(*attribute_tuple)
cur. execut e("SELECT * FROM of fers WHERE publish = ?", 0)
The query above sent 4 attributes.

To check the current query attributes:
print(cur.get_attributes())
prints:

[("foo", 2), ("bar", "3"), ("page_nane", "root"), ("previous_page", "login")]

Query attributes are not cleared until the cursor is closed or
of the clear_attributes() method is invoked:

cur.clear_attributes()
print(cur.get_attributes())

prints:
[]

cur. execut e("SELECT first_nane, |ast_name FROM clients")
The query above did not send any attibute.

This method was added in Connector/Python 8.0.26.

10.5.3 MySQLCursor.clear_attributes() Method
Syntax:
cursor.clear_attributes()

Clear the list of query attributes on the connector's side, as set by Section 10.5.2,
“MySQLCursor.add_attribute() Method".

77

https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html
https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html#query-attributes-prerequisites
https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html#query-attributes-prerequisites

MySQLCursor.get_attributes() Method

This method was added in Connector/Python 8.0.26.

10.5.4 MySQLCursor.get_attributes() Method

Syntax:

cursor.get _attributes()

Return a list of existing query attributes, as set by Section 10.5.2, “MySQLCursor.add_attribute()
Method”.

This method was added in Connector/Python 8.0.26.

10.5.5 MySQLCursor.callproc() Method

Syntax:

result_args = cursor.call proc(proc_nane, args=())

This method calls the stored procedure named by the pr oc_nane argument. The ar gs sequence

of parameters must contain one entry for each argument that the procedure expects. cal | proc()
returns a modified copy of the input sequence. Input parameters are left untouched. Output and input/
output parameters may be replaced with new values.

Result sets produced by the stored procedure are automatically fetched and stored as
MySQLCursorBuffered instances. For more information about using these result sets, see
stored _results().

Suppose that a stored procedure takes two parameters, multiplies the values, and returns the product:

CREATE PROCEDURE nul tiply(IN pFacl | NT, | N pFac2 | NT, OUT pProd | NT)
BEG N

SET pProd : = pFacl * pFac2;
END;

The following example shows how to execute the nul t i pl y() procedure:

>>> args = (5, 6, 0) # 0 is to hold value of the OQUT paraneter pProd
>>> cursor.callproc(' multiply', args)
("5, '6', 30L)

Connector/Python 1.2.1 and up permits parameter types to be specified. To do this, specify a
parameter as a two-item tuple consisting of the parameter value and type. Suppose that a procedure
spl() has this definition:

CREATE PROCEDURE spl(IN pStrl VARCHAR(20), IN pStr2 VARCHAR(20),
QUT pConCat VARCHAR(100))
BEG N
SET pConCat := CONCAT(pStrl, pStr2);
END;

To execute this procedure from Connector/Python, specifying a type for the OUT parameter, do this:

args = ('ham, 'eggs', (0, 'CHAR))
result_args = cursor.callproc('spl', args)
print(result_args[2])

10.5.6 MySQLCursor.close() Method

Syntax:

cursor. cl ose()

Use cl ose() when you are done using a cursor. This method closes the cursor, resets all results, and
ensures that the cursor object has no reference to its original connection object.

78

MySQLCursor.execute() Method

10.5.7 MySQLCursor.execute() Method

Syntax:

cursor. execut e(operati on, paranms=None)
iterator = cursor.execute(operation, paranms=None)

Al owed before 9.2.0
iterator = cursor.execute(operation, params=None, nulti=True)

This method executes the given database oper at i on (query or command). The parameters found in
the tuple or dictionary par ans are bound to the variables in the operation. Specify variables using %s
or %¢{ nanme) s parameter style (that is, using f or mat or pyf or nat style).

Before Connector/Python 9.2.0, execut e() accepted a mul ti option and returned an iterator if set to
Tr ue. That option was removed in 9.2.0, and Section 9.3, “Executing Multiple Statements” was added.

Note

In Python, a tuple containing a single value must include a comma. For
example, (‘abc’) is evaluated as a scalar while (‘abc’,) is evaluated as a tuple.

This example inserts information about a new employee, then selects the data for that person. The
statements are executed as separate execut e() operations:

insert_stnt = (
"I NSERT | NTO enpl oyees (enp_no, first_nane, |ast_nanme, hire_date) "
"VALUES (%, %, %, %)"

)
data = (2, 'Jane', 'Doe', datetine.date(2012, 3, 23))
cursor.execute(insert_stnt, data)

sel ect_stnt = "SELECT * FROM enpl oyees WHERE enp_no = % enp_no)s"
cursor. execute(select_stnt, { "enp_no': 2 })

The data values are converted as necessary from Python objects to something MySQL understands. In
the preceding example, the dat et i ne. dat e() instance is converted to ' 2012- 03- 23" .

If the connection is configured to fetch warnings, warnings generated by the operation are available
through the MySQLCursor.fetchwarnings() method.

10.5.8 MySQLCursor.executemany() Method

Syntax:

cur sor. execut emany(oper ati on, seq_of _parans)

This method prepares a database oper at i on (query or command) and executes it against all
parameter sequences or mappings found in the sequence seq_of par ans.

Note

In Python, a tuple containing a single value must include a comma. For
example, (‘abc’) is evaluated as a scalar while (‘abc’,) is evaluated as a tuple.

In most cases, the execut enany() method iterates through the sequence of parameters, each time
passing the current parameters to the execut e() method.

An optimization is applied for inserts: The data values given by the parameter sequences are batched
using multiple-row syntax. The following example inserts three records:

data = [
(" Jane', date(2005, 2, 12)),
('Joe', date(2006, 5, 23)),
(' John', date(2010, 10, 3)),

79

MySQLCursor.fetchall() Method

]
stnt = "I NSERT | NTO enpl oyees (first_name, hire_date) VALUES (%, %)"

cursor. execut emany(stnt, data)

For the preceding example, the | NSERT statement sent to MySQL is:

I NSERT | NTO enpl oyees (first_nanme, hire_date)
VALUES ('Jane', '2005-02-12'), ('Joe', '2006-05-23"), ('John', '2010-10-03")

With the execut emany() method, it is not possible to specify multiple statements to execute in the
oper at i on argument. Doing so raises an | nt er nal Err or exception. Consider using Section 9.3,
“Executing Multiple Statements” instead.

10.5.9 MySQL Cursor.fetchall() Method

Syntax:

rows = cursor.fetchall ()

The method fetches all (or all remaining) rows of a query result set and returns a list of tuples. If no
more rows are available, it returns an empty list.

The following example shows how to retrieve the first two rows of a result set, and then retrieve any
remaining rows:

>>> cursor. execut e("SELECT * FROM enpl oyees ORDER BY enp_no")
>>> head_rows = cursor.fetchmany(size=2)
>>> remai ni ng_rows = cursor.fetchall ()

You must fetch all rows for the current query before executing new statements using the same
connection.

10.5.10 MySQL Cursor.fetchmany() Method

Syntax:

rows = cursor.fetchmany(size=1)

This method fetches the next set of rows of a query result and returns a list of tuples. If no more rows
are available, it returns an empty list.

The number of rows returned can be specified using the si ze argument, which defaults to one. Fewer
rows are returned if fewer rows are available than specified.

You must fetch all rows for the current query before executing new statements using the same
connection.

10.5.11 MySQLCursor.fetchone() Method

Syntax:

row = cursor.fetchone()

This method retrieves the next row of a query result set and returns a single sequence, or None if
no more rows are available. By default, the returned tuple consists of data returned by the MySQL
server, converted to Python objects. If the cursor is a raw cursor, no such conversion occurs; see
Section 10.6.2, “cursor.MySQLCursorRaw Class”.

The f et chone() method is used by fetchall() and fetchmany(). It is also used when a cursor is used
as an iterator.

The following example shows two equivalent ways to process a query result. The first uses
fet chone() inawhi | e loop, the second uses the cursor as an iterator:

80

https://dev.mysql.com/doc/refman/8.0/en/insert.html

MySQLCursor.nextset() Method

Using a while | oop

cursor. execut e(" SELECT * FROM enpl oyees")
row = cursor. fetchone()

while row is not None:

print (row)
row = cursor. fetchone()

Using the cursor as iterator
cursor. execut e(" SELECT * FROM enpl oyees")
for rowin cursor:

print (row)

You must fetch all rows for the current query before executing new statements using the same
connection.

10.5.12 MySQLCursor.nextset() Method

Syntax:

row = cursor. nextset()

This method makes the cursor skip to the next available set, discarding any remaining rows from the
current set. It returns None if there are no more sets or returns Tr ue and subsequent calls to the
cursor.fetch*() methods returns rows from the next result set.

This method can be used as part of the multi statement execution workflow.

sql _operation = """’

SET @=1, @-='2025-01-01";
SELECT @, LENGTH(' hello'), @;
SELECT @@ er si on;

with cnx.cursor() as cur:
cur . execut e(sqgl _operati on)

result_set = cur.fetchall ()
do sonething with result set

whi | e cur.nextset():
result_set = cur.fetchall ()
do sonething with result set

This method was added in Connector/Python 9.2.0.

10.5.13 MySQLCursor.fetchsets() Method

Syntax:

for statenent, result_set in cursor.fetchsets():
do sonething with statenent and/or result set

This method generates a set of result sets caused by the last cursor.execute*(). It returns a generator
where each item is a 2-tuple; the first element is the statement that caused the result set, and the
second is the result set itself.

This method can be used as part of the multi statement execution workflow.

sql _operation = "'""

SET @=1, @='2025-01-01";
SELECT @, LENGTH('hello'), @;
SELECT @@er si on;

with cnx.cursor() as cur:
cur . execut e(sql _operation)
for statement, result_set in cur.fetchsets():
do sonething with statenent and/or result set

81

MySQLCursor.fetchwarnings() Method

This method was added in Connector/Python 9.2.0.

10.5.14 MySQL Cursor.fetchwarnings() Method

Deprecation

This method has been deprecated as of 9.3.0. Use the property method
Section 10.5.18, “MySQLCursor.warnings Property” instead.

Syntax:

tupl es = cursor. fetchwarni ngs()

This method returns a list of tuples containing warnings generated by the previously executed
operation. To set whether to fetch warnings, use the connection's get _war ni ngs property.

The following example shows a SELECT statement that generates a warning:
>>> cnx. get _warni ngs = True

>>> cursor. execute("SELECT 'a' +1")
>>> cursor.fetchall ()

[(1.0,)]

>>> cursor. f et chwar ni ngs()
[(u" Warning', 1292, u"Truncated incorrect DOUBLE value: 'a'")]

When warnings are generated, it is possible to raise errors instead, using the connection's
rai se_on_war ni ngs property.

10.5.15 MySQLCursor.stored_results() Method
Deprecation
This method has been deprecated as of 9.3.0.

Syntax:

iterator = cursor.stored_results()

This method returns a list iterator object that can be used to process result sets produced by a stored
procedure executed using the callproc() method. The result sets remain available until you use the
cursor to execute another operation or call another stored procedure.

The following example executes a stored procedure that produces two result sets, then uses
stored_resul ts() to retrieve them:

>>> cursor.call proc(' myproc')

0

>>> for result in cursor.stored_results()
print result.fetchall ()

[(1)]
[(2,)]
10.5.16 MySQLCursor.column_names Property

Syntax:
sequence = cursor. col um_nanes

This read-only property returns the column names of a result set as sequence of Unicode strings.

The following example shows how to create a dictionary from a tuple containing data with keys using
col utm_nanes:

82

https://dev.mysql.com/doc/refman/8.0/en/select.html

MySQLCursor.description Property

cursor. execut e(" SELECT | ast _nane, first_name, hire_date "
"FROM enpl oyees WHERE enp_no = %", (123,))

row = di ct(zip(cursor.colum_nanes, cursor.fetchone()))

print("{last_nanme}, {first_nane}: {hire_date}".format(row))

Alternatively, as of Connector/Python 2.0.0, you can fetch rows as dictionaries directly; see
Section 10.6.3, “cursor.MySQLCursorDict Class”.

10.5.17 MySQLCursor.description Property

Syntax:

tupl es = cursor.description

This read-only property returns a list of tuples describing the columns in a result set. Each tuple in the
list contains values as follows:

(col um_nane
type,

None

None

None

None

nul | _ok,

col um_f 1| ags)

The following example shows how to interpret descri pti on tuples:

i mport nysql . connect or
from nysqgl . connector inport FieldType

cursor. execut e(" SELECT enp_no, |ast_nanme, hire_date "
"FROM enpl oyees WHERE enp_no = %", (123,))
for i in range(len(cursor.description)):
print("Columm {}:".format(i+1))
desc = cursor.description[i]
print(" colum_nane = {}".fornmat (desc[0]))
print(" type ={} ({})".format(desc[1l], FieldType.get_info(desc[1])))
print(" null_ok = {}".format(desc[6]))
print(" colum_flags = {}".format(desc[7]))

The output looks like this:

Col umm 1
col utm_nane = enp_no
type = 3 (LONG

null _ok =0
colum_fl ags = 20483
Col um 2
col um_nane = | ast_nane
type = 253 (VAR _STRI NG
null _ok =0
colum_fl ags = 4097
Col umm 3
col um_nane = hire_date
type = 10 (DATE)
null _ok =0
colum_fl ags = 4225

The col utm_f | ags value is an instance of the const ant s. Fi el dFl ag class. To see how to
interpret it, do this:

>>> from nysql . connector inport FieldFlag
>>> Fj el dFl ag. desc

10.5.18 MySQLCursor.warnings Property

83

MySQLCursor.lastrowid Property

Syntax:

tupl es = cursor. warni ngs

This property returns a list of tuples containing warnings generated by the previously executed
operation. To set whether to fetch warnings, use the connection's get _war ni ngs property.

The following example shows a SELECT statement that generates a warning:

>>> cnx. get _warni ngs = True
>>> cursor. execut e(" SELECT 'a' +1")
>>> cursor. fetchall ()

[(1.0,)]

>>> print (cursor.warni ngs)
[(u' Warning', 1292, u"Truncated incorrect DOUBLE value: 'a'")]

When warnings are generated, it is possible to raise errors instead, using the connection's
rai se_on_war ni ngs property.

10.5.19 MySQLCursor.lastrowid Property

Syntax:

id = cursor.lastrow d

This read-only property returns the value generated for an AUTO | NCREVENT column by the previous
| NSERT or UPDATE statement or None when there is no such value available. For example, if you
perform an | NSERT into a table that contains an AUTO | NCREMENT column, | ast r owi d returns the
AUTO_| NCREMENT value for the new row. For an example, see Section 5.3, “Inserting Data Using
Connector/Python”.

The | ast r owi d property is like the nysql i nsert i d() C API function; see mysql_insert_id().

10.5.20 MySQLCursor.rowcount Property

Syntax:

count = cursor.rowcount

This read-only property returns the number of rows returned for SELECT statements, or the number of
rows affected by DML statements such as | NSERT or UPDATE. For an example, see Section 10.5.7,
“MySQLCursor.execute() Method”.

For nonbuffered cursors, the row count cannot be known before the rows have been fetched. In this
case, the number of rows is -1 immediately after query execution and is incremented as rows are
fetched.

The r owcount property is like the mysqgl _af f ect ed _rows() C API function; see
mysql_affected_rows().

10.5.21 MySQLCursor.statement Property

Syntax:

str = cursor. statenent

This read-only property returns the last executed statement as a string. The st at enent property can
be useful for debugging and displaying what was sent to the MySQL server.

The string can contain multiple statements if a multiple-statement string was executed. This occurs for
execut e() with mul ti =Tr ue. In this case, the st at enent property contains the entire statement
string and the execut e() call returns an iterator that can be used to process results from the

84

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-insert-id.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-insert-id.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-affected-rows.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-affected-rows.html

MySQLCursor.with_rows Property

individual statements. The st at enent property for this iterator shows statement strings for the
individual statements.

10.5.22 MySQLCursor.with_rows Property

Syntax:

bool ean = cursor.with_rows

This read-only property returns Tr ue or Fal se to indicate whether the most recently executed
operation could have produced rows.

The wi t h_r ows property is useful when it is necessary to determine whether a statement produces
a result set and you need to fetch rows. The following example retrieves the rows returned by the
SELECT statements, but reports only the affected-rows value for the UPDATE statement:

i mport nysqgl . connect or

cnx = nysql . connector. connect (user="scott', database="test')
cursor = cnx.cursor()
operation = ' SELECT 1; UPDATE t1 SET cl = 2; SELECT 2
for result in cursor.execute(operation)
if result.with_rows:
result.fetchall ()
el se
print("Nunber of affected rows: {}".format(result.rowount))

10.6 Subclasses cursor.MySQLCursor

The cursor classes described in the following sections inherit from the My SQLCur sor class, which is
described in Section 10.5, “cursor.MySQLCursor Class”.

10.6.1 cursor.MySQLCursorBuffered Class

The My SQLCur sor Buf f er ed class inherits from My SQLCur sor .

After executing a query, a My SQLCur sor Buf f er ed cursor fetches the entire result set from the server
and buffers the rows.

For queries executed using a buffered cursor, row-fetching methods such as f et chone() return rows
from the set of buffered rows. For nonbuffered cursors, rows are not fetched from the server until a
row-fetching method is called. In this case, you must be sure to fetch all rows of the result set before
executing any other statements on the same connection, or an | nt er nal Err or (Unread result found)
exception will be raised.

My SQLCur sor Buf f er ed can be useful in situations where multiple queries, with small result sets,
need to be combined or computed with each other.

To create a buffered cursor, use the buf f er ed argument when calling a connection's cur sor ()
method. Alternatively, to make all cursors created from the connection buffered by default, use the
buf f er ed connection argument.

Example:
i mport nysqgl . connect or
cnx = nysql . connector. connect ()

Only this particular cursor will buffer results
cursor = cnx. cursor (buffered=True)

Al cursors created fromcnx2 will be buffered by default
cnx2 = nysql . connect or. connect (buf f er ed=Tr ue)

85

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/update.html

cursor.MySQLCursorRaw Class

For a practical use case, see Section 6.1, “Tutorial: Raise Employee's Salary Using a Buffered Cursor”.

10.6.2 cursor.MySQLCursorRaw Class

The My SQLCur sor Raw class inherits from My SQLCur sor .

A My SQLCur sor Raw cursor skips the conversion from MySQL data types to Python types when
fetching rows. A raw cursor is usually used to get better performance or when you want to do the
conversion yourself.

To create a raw cursor, use the r aw argument when calling a connection's cur sor () method.
Alternatively, to make all cursors created from the connection raw by default, use the r aw connection
argument.

Example:
i mport mysql . connect or
cnx = mysqgl . connect or. connect ()

Only this particular cursor will be raw
cursor = cnx.cursor (raw=True)

All cursors created fromcnx2 will be raw by default
cnx2 = nmysgl . connect or. connect (raw=Tr ue)

10.6.3 cursor.MySQLCursorDict Class

The MySQLCur sor Di ct class inherits from My SQLCur sor . This class is available as of Connector/
Python 2.0.0.

A MySQLCur sor Di ct cursor returns each row as a dictionary. The keys for each dictionary object are
the column names of the MySQL result.

Example:

chx = mysql . connect or. connect (dat abase="wor| d')
cursor = cnx. cursor (dictionary=True)
cursor. execut e(" SELECT * FROM country WHERE Continent = 'Europe'")

print("Countries in Europe:")
for rowin cursor:
print("* {Nanme}".format(Name=row ' Nanme']

The preceding code produces output like this:

Countries in Europe:
* Al bani a
* Andorra
* Austria
* Bel gi um
* Bul gari a

It may be convenient to pass the dictionary to f or mat () as follows:
cursor. execut e(" SELECT Nanme, Popul ati on FROM country WHERE Continent = 'Europe'")
print("Countries in Europe with popul ation:")

for rowin cursor:
print("* {Nane}: {Popul ation}".format(**row))

10.6.4 cursor.MySQLCursorBufferedDict Class

The MySQLCur sor Buf f er edDi ct class inherits from MySQLCur sor . This class is available as of
Connector/Python 2.0.0.

86

cursor.MySQLCursorPrepared Class

A MySQLCur sor Buf f eredDi ct cursor is like a MySQLCur sor Di ct cursor, but is buffered: After
executing a query, it fetches the entire result set from the server and buffers the rows. For information
about the implications of buffering, see Section 10.6.1, “cursor.MySQLCursorBuffered Class”.

To get a buffered cursor that returns dictionaries, add the buf f er ed argument when instantiating a
new dictionary cursor:

cursor = cnx.cursor(dictionary=True, buffered=True)

10.6.5 cursor.MySQLCursorPrepared Class

The My SQLCur sor Pr epar ed class inherits from My SQLCur sor .
Note

This class is available as of Connector/Python 1.1.0. The C extension supports
it as of Connector/Python 8.0.17.

In MySQL, there are two ways to execute a prepared statement:
* Use the PREPARE and EXECUTE statements.

» Use the binary client/server protocol to send and receive data. To repeatedly execute the same
statement with different data for different executions, this is more efficient than using PREPARE and
EXECUTE. For information about the binary protocol, see C API Prepared Statement Interface.

In Connector/Python, there are two ways to create a cursor that enables execution of prepared
statements using the binary protocol. In both cases, the cur sor () method of the connection object
returns a My SQLCur sor Pr epar ed object:

e The simpler syntax uses a pr epar ed=Tr ue argument to the cur sor () method. This syntax is
available as of Connector/Python 1.1.2.

i nport nysql . connect or

cnx = mysql . connect or. connect (dat abase="' enpl oyees')
cursor = cnx. cursor (prepared=True)

 Alternatively, create an instance of the MySQLCur sor Pr epar ed class using the cur sor _cl ass
argument to the cur sor () method. This syntax is available as of Connector/Python 1.1.0.

i nport nysql . connect or
from nysql . connector. cursor inport MySQLCursor Prepared

cnx = nysql.connector. connect (dat abase=' enpl oyees')
cursor = cnx. cursor (cursor_cl ass=MySQ.Cur sor Pr epar ed)

A cursor instantiated from the My SQLCur sor Pr epar ed class works like this:

» The first time you pass a statement to the cursor's execut e() method, it prepares the statement.
For subsequent invocations of execut e() , the preparation phase is skipped if the statement is the
same.

» The execut e() method takes an optional second argument containing a list of data values to
associate with parameter markers in the statement. If the list argument is present, there must be one
value per parameter marker.

Example:

cursor = cnx. cursor (prepared=True)

stnmt = "SELECT full nane FROM enpl oyees WHERE id = %" # (1)
cursor. execute(stnt, (5,)) # (2)
... fetch data ...

cursor.execute(stnt, (10,)) # (3)
... fetch data ...

87

https://dev.mysql.com/doc/refman/8.0/en/prepare.html
https://dev.mysql.com/doc/refman/8.0/en/execute.html
https://dev.mysql.com/doc/refman/8.0/en/prepare.html
https://dev.mysql.com/doc/refman/8.0/en/execute.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-prepared-statement-interface.html

constants.ClientFlag Class

1. The % within the statement is a parameter marker. Do not put quote marks around parameter
markers.

2. For the first call to the execut e() method, the cursor prepares the statement. If data is given in
the same call, it also executes the statement and you should fetch the data.

3. For subsequent execut e() calls that pass the same SQL statement, the cursor skips the
preparation phase.

Prepared statements executed with My SQLCur sor Pr epar ed can use the f or mat (%) or qmar k (?)
parameterization style. This differs from nonprepared statements executed with My SQLCur sor , which
can use the f or mat or pyf or nat parameterization style.

To use multiple prepared statements simultaneously, instantiate multiple cursors from the
My SQLCur sor Pr epar ed class.

The MySQL client/server protocol has an option to send prepared statement parameters via the
COM _STMT_SEND LONG_DATA command. To use this from Connector/Python scripts, send the
parameter in question using the | OBase interface. Example:

fromio inport |OBase

cur = cnx.cursor (prepared=Tr ue)
cur.execute("SELECT (%)", (io.Bytesl O bytes("A", "latinl")),))

10.7 constants.ClientFlag Class

This class provides constants defining MySQL client flags that can be used when the connection
is established to configure the session. The Cl i ent Fl ag class is available when importing
nmysql . connect or.

>>> jnport nysql.connector
>>> nysql . connector. C i ent Fl ag. FOUND_RONS
2

See Section 10.2.32, “MySQLConnection.set_client_flags() Method” and the connection argument
client_flag.

The i ent Fl ag class cannot be instantiated.

10.8 constants.FieldType Class

This class provides all supported MySQL field or data types. They can be useful when dealing with raw
data or defining your own converters. The field type is stored with every cursor in the description for
each column.

The following example shows how to print the name of the data type for each column in a result set.

from __future__ inport print_function
i mport mysql . connect or
from nysqgl . connector inport FieldType

cnx = mnysql . connector. connect (user="'scott', database='test')
cursor = cnx.cursor()

cur sor. execut e(
"SELECT DATE(NOW)) AS "cl', TIME(NON)) AS "c2°, "
"NON) AS "c3", 'a string’ AS "'c4, 42 AS "c5 ")
rows = cursor.fetchall ()

for desc in cursor.description
col name = desc[0]

88

constants.SQLMode Class

coltype = desc[1]

print("Colum {} has type {}".format(
col nanme, Fi el dType. get _i nfo(col type)))

cursor. cl ose()
cnx. cl ose()

The Fi el dType class cannot be instantiated.

10.9 constants.SQLMode Class

This class provides all known MySQL Server SQL Modes. It is mostly used when setting the
SQL modes at connection time using the connection's sql _node property. See Section 10.2.52,
“MySQLConnection.sgl_mode Property”.

The SQLMbde class cannot be instantiated.

10.10 constants.CharacterSet Class

This class provides all known MySQL characters sets and their default collations. For examples, see
Section 10.2.31, “MySQLConnection.set_charset_collation() Method”.

The Char act er Set class cannot be instantiated.

10.11 constants.RefreshOption Class

This class performs various flush operations.

Ref reshOpt i on. GRANT

Refresh the grant tables, like FLUSH PRI VI LEGES.
RefreshOpti on. LOG

Flush the logs, like FLUSH LOGS.

Ref reshOpti on. TABLES

Flush the table cache, like FLUSH TABLES.
RefreshOpti on. HOSTS

Flush the host cache, like FLUSH HOSTS.
Ref reshOpti on. STATUS

Reset status variables, like FLUSH STATUS.
Ref reshOpt i on. THREADS

Flush the thread cache.

Ref reshOpti on. REPLI CA

On a replica replication server, reset the source server information and restart the replica, like RESET
SLAVE. This constant was named "RefreshOption.SLAVE" before v8.0.23.

10.12 Errors and Exceptions

The nysql . connect or. err or s module defines exception classes for errors and warnings raised
by MySQL Connector/Python. Most classes defined in this module are available when you import
nmysql . connect or.

89

https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-logs
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-tables
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-hosts
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-status
https://dev.mysql.com/doc/refman/8.0/en/reset-slave.html
https://dev.mysql.com/doc/refman/8.0/en/reset-slave.html

errorcode Module

The exception classes defined in this module mostly follow the Python Database API Specification v2.0
(PEP 249). For some MySQL client or server errors it is not always clear which exception to raise. It is
good to discuss whether an error should be reclassified by opening a bug report.

MySQL Server errors are mapped with Python exception based on their SQLSTATE value (see Server
Error Message Reference). The following table shows the SQLSTATE classes and the exception
Connector/Python raises. It is, however, possible to redefine which exception is raised for each server
error. The default exception is Dat abaseErr or .

Table 10.1 Mapping of Server Errors to Python Exceptions

SQLSTATE Class Connector/Python Exception
02 Dat aErr or

02 Dat aErr or

07 Dat abaseEr r or

08 Oper ational Error
0A Not Support edErr or
21 Dat aErr or

22 Dat aEr r or

23 IntegrityError
24 Pr ogr amm ngErr or
25 Pr ogr anmi ngError
26 Pr ogr anmmi ngError
27 Pr ogr ammi ngErr or
28 Pr ogr amm ngErr or
2A Pr ogr anmi ngError
2B Dat abaseEr r or

2C Pr ogr ammi ngErr or
2D Dat abaseErr or

2E Dat abaseErr or

33 Dat abaseErr or

34 Pr ogr ammi ngErr or
35 Pr ogr amm ngErr or
37 Pr ogr anmi ngError
3C Pr ogr ammi ngError
3D Pr ogr ammi ngErr or
3F Pr ogr amm ngErr or
40 I nternal Error

42 Pr ogr ammi ngError
44 I nternal Error

Hz Oper ati onal Error
XA IntegrityError
OK Qper ational Error
HY Dat abaseErr or

10.12.1 errorcode Module

90

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html

errors.Error Exception

This module contains both MySQL server and client error codes defined as module attributes with the
error number as value. Using error codes instead of error numbers could make reading the source
code a bit easier.

>>> from nysql . connector inport errorcode
>>> errorcode. ER BAD TABLE ERROR
1051

For more information about MySQL errors, see Error Messages and Common Problems.

10.12.2 errors.Error Exception

This exception is the base class for all other exceptions in the er r or s module. It can be used to catch
all errors in a single except statement.

The following example shows how we could catch syntax errors:
i nport nysql . connect or

try:
cnx = mysql . connector. connect (user='scott', database='enpl oyees')
cursor = cnx.cursor()
cursor. execut e(" SELECT * FORM enpl oyees") # Syntax error in query
cnx. cl ose()

except nysql.connector.Error as err
print ("Sonmething went wong: {}".fornat(err))

Initializing the exception supports a few optional arguments, namely nsg, er r no, val ues and

sql st at e. All of them are optional and default to None. err or s. Err or is internally used by
Connector/Python to raise MySQL client and server errors and should not be used by your application
to raise exceptions.

The following examples show the result when using no arguments or a combination of the arguments:

>>> from nysql . connector.errors inmport Error
>>> str(Error())
" Unknown error'

>>> str(Error (" Oops! There was an error."))
' Qops! There was an error.

>>> str(Error(errno=2006))
' 2006: MySQL server has gone away'

>>> str(Error(errno=2002, val ues=('/tnp/ mysql.sock', 2)))
"2002: Can't connect to |local MySQL server through socket '/tnp/nysql.sock' (2)"

>>> str(Error(errno=1146, sql state='42S02', nsg="Table 'test.spam doesn't exist"))
"1146 (42S02): Table 'test.spam doesn't exist"

The example which uses error number 1146 is used when Connector/Python receives an error packet
from the MySQL Server. The information is parsed and passed to the Er r or exception as shown.

Each exception subclassing from Er r or can be initialized using the previously mentioned arguments.
Additionally, each instance has the attributes er r no, nsg and sqgl st at e which can be used in your
code.

The following example shows how to handle errors when dropping a table which does not exist (when
the DROP TABLE statement does not include a | F EXI STS clause):

i mport mysql . connect or
from nmysqgl . connector inport errorcode

cnx = mysql . connector. connect (user="'scott', database='test')
cursor = cnx.cursor()

91

https://dev.mysql.com/doc/refman/8.0/en/error-handling.html
https://dev.mysql.com/doc/refman/8.0/en/drop-table.html

errors.DataError Exception

try:
cur sor. execut e(" DROP TABLE spani')
except nysql.connector.Error as err:
if err.errno == errorcode. ER BAD TABLE_ERRCOR:
print("Creating table spani)
el se:
rai se

Prior to Connector/Python 1.1.1, the original message passed to errors. Error () is not saved in
such a way that it could be retrieved. Instead, the Er r or . nsg attribute was formatted with the error
number and SQLSTATE value. As of 1.1.1, only the original message is saved in the Err or . nsg
attribute. The formatted value together with the error number and SQLSTATE value can be obtained by
printing or getting the string representation of the error object. Example:

try:
conn = nmysqgl . connect or. connect (dat abase = "baddb")
except mysql.connector.Error as e:
print "Error code:", e.errno # error nunber
print "SQLSTATE val ue:", e.sqlstate # SQ.STATE val ue
print "Error nmessage:", e.nsg # error nessage
print "Error:", e # errno, sqlstate, nsg val ues
s = str(e)
print "Error:", s # errno, sqlstate, nsg val ues

errors. Error is asubclass of the Python St andar dEr r or .

10.12.3 errors.DataError Exception

This exception is raised when there were problems with the data. Examples are a column set to NULL
that cannot be NULL, out-of-range values for a column, division by zero, column count does not match
value count, and so on.

errors. Dat aError is a subclass of err or s. Dat abaseError.

10.12.4 errors.DatabaseError Exception

This exception is the default for any MySQL error which does not fit the other exceptions.

errors. Dat abaseError is asubclass of errors. Error.

10.12.5 errors.IntegrityError Exception

This exception is raised when the relational integrity of the data is affected. For example, a duplicate
key was inserted or a foreign key constraint would fail.

The following example shows a duplicate key error raised as IntegrityError:
cursor. execut e("CREATE TABLE t1 (id int, PRIMARY KEY (id))")
try:
cursor.execute("INSERT INTOt1 (id) VALUES (1)")
cursor.execute("INSERT INTOt1 (id) VALUES (1)")

except nysql.connector.IntegrityError as err:
print("Error: {}".format(err))

errors. IntegrityError isasubclass of errors. Dat abaseError.
10.12.6 errors.InterfaceError Exception

This exception is raised for errors originating from Connector/Python itself, not related to the MySQL
server.

errors. I nterfaceError isasubclassoferrors. Error.

10.12.7 errors.InternalError Exception

92

errors.NotSupportedError Exception

This exception is raised when the MySQL server encounters an internal error, for example, when a
deadlock occurred.

errors. I nternal Error is asubclass of errors. Dat abaseErr or.

10.12.8 errors.NotSupportedError Exception

This exception is raised when some feature was used that is not supported by the version of MySQL
that returned the error. It is also raised when using functions or statements that are not supported by
stored routines.

errors. Not Support edError is asubclass of errors. Dat abaseError.

10.12.9 errors.OperationalError Exception

This exception is raised for errors which are related to MySQL's operations. For example: too
many connections; a host name could not be resolved; bad handshake; server is shutting down,
communication errors.

errors. Operational Error is asubclass of errors. Dat abaseErr or.

10.12.10 errors.PoolError Exception

This exception is raised for connection pool errors. err or s. Pool Err or is a subclass of
errors. Error.

10.12.11 errors.ProgrammingError Exception

This exception is raised on programming errors, for example when you have a syntax error in your SQL
or a table was not found.

The following example shows how to handle syntax errors:
try:
cursor. execute("CREATE DESK t1 (id int, PRI MARY KEY (id))")
except nysql.connector. Progranm ngError as err
if err.errno == errorcode. ER_SYNTAX_ERROR:
print("Check your syntax!")
el se
print("Error: {}".format(err))

errors. Progranmm ngError is asubclass of errors. Dat abaseError.
10.12.12 errors.Warning Exception

This exception is used for reporting important warnings, however, Connector/Python does not use it. It
is included to be compliant with the Python Database Specification v2.0 (PEP-249).

Consider using either more strict Server SQL Modes or the raise_on_warnings connection argument to
make Connector/Python raise errors when your queries produce warnings.

errors. War ni ng is a subclass of the Python St andar dEr r or .

10.12.13 errors.custom_error_exception() Function

Syntax:

errors. custom error_exception(error=None, excepti on=None)

This method defines custom exceptions for MySQL server errors and returns current customizations.

93

https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html

errors.custom_error_exception() Function

If error is a MySQL Server error number, you must also pass the except i on class. The err or
argument can be a dictionary, in which case the key is the server error number, and value the class of
the exception to be raised.

To reset the customizations, supply an empty dictionary.

i mport mnysql . connect or
from nysql . connector inport errorcode

Server error 1028 shoul d rai se a Dat abaseError
nmysql . connect or. cust om error_excepti on(1028, nysql . connect or. Dat abaseError)

Or using a dictionary:

nmysql . connect or. cust om error_exception({
1028: nysgql . connect or. Dat abaseErr or,
1029: nysql . connect or. Operati onal Error,

b

To reset, pass an enpty dictionary:
nmysql . connect or. cust om error_exception({})

94

Chapter 11 Connector/Python C Extension API Reference

Table of Contents

11.1 _mysqgl_conneCtOr MOAUIEuiiiiiii et e e e e eaa e ees 96
11.2 _mysqgl_connector.MySQL() ClaSSccuuiiiiiiiii e 96
11.3 _mysql_connector.MySQL.affected_rows() Methodc.oooiiiiiiiiiiii e 96
11.4 _mysql_connector.MySQL.autocommit() Methodooiiiiiiiiii e, 96
11.5 _mysql_connector.MySQL.buffered() Method ... 97
11.6 _mysql_connector.MySQL.change_user() Methodcoooiiiiiiii e 97
11.7 _mysql_connector.MySQL.character_set_name() Methodocoiiiiiiiiiiiiii e, 97
11.8 _mysql_connector.MySQL.close() Methodcoouniiiiiiiiii e 97
11.9 _mysql_connector.MySQL.commit() Method ..o 97
11.10 _mysql_connector.MySQL.connect() Methodcoooiiiiiiiiiii e 97
11.11 _mysql_connector.MySQL.connected() Methodooiiiiiiiiiiii e 98
11.12 _mysql_connector.MySQL.consume_result() Methodc.oooeiiiiiiiiiiii e, 98
11.13 _mysql_connector.MySQL.convert_to_mysgl() Methodcccooieiiiiiiiii e, 98
11.14 _mysql_connector.MySQL.escape_string() Method ..o 98
11.15 mysql_connector.MySQL.fetch_fields() Methodcoooiiiiiii e, 99
11.16 _mysql_connector.MySQL.fetch_row() Method ..o 99
11.17 _mysql_connector.MySQL.field_count() Method ..., 99
11.18 _mysql_connector.MySQL.free_result() Methodcooooiiiiiiiii e, 99
11.19 _mysql_connector.MySQL.get_character_set_info() Methodc.cocoiiiiiiiiiiiiiiinnn, 99
11.20 _mysql_connector.MySQL.get_client_info() Method ... 99
11.21 _mysql_connector.MySQL.get_client_version() Methodcoooiiiiii, 100
11.22 _mysql_connector.MySQL.get_host_info() Methodc.coooiiiiiiii e, 100
11.23 _mysql_connector.MySQL.get_proto_info() Methodccooouiiiiiiiiiii e, 100
11.24 _mysql_connector.MySQL.get_server_info() Methodc.ooviiuiiiiiiiiii e 100
11.25 _mysql_connector.MySQL.get_server_version() Methodcooeiiiiiiiiiiiiii e, 100
11.26 _mysql_connector.MySQL.get_ssl_cipher() Method ..o, 100
11.27 _mysql_connector.MySQL.hex_string() Method ... 100
11.28 _mysql_connector.MySQL.insert_id() Methodooiiiiiiiiii e 101
11.29 _mysql_connector.MySQL.more_results() Methodcoooiiiiiiiii e 101
11.30 _mysql_connector.MySQL.next_result() Methodcooeuiiiiiiiii e 101
11.31 _mysql_connector.MySQL.num_fields() Methodcoooiiiiiiii e 101
11.32 _mysql_connector.MySQL.num_rows() Methodoiiiiiiiiiiii e 101
11.33 _mysql_connector.MySQL.piNg() Methodcoouiiiiii e 101
11.34 _mysql_connector.MySQL.query() Methodc.oooiiiiiiiii e 101
11.35 _mysql_connector.MySQL.raw() Methodooiiiiiiiiiii e 102
11.36 _mysql_connector.MySQL.refresh() Methodc.ooiiiiiiiiii e 102
11.37 _mysql_connector.MySQL.reset_connection() Methodc..ocooiiiiiiiiiiii e, 102
11.38 _mysql_connector.MySQL.rollback() Methodccoooiiiiiiii 102
11.39 _mysql_connector.MySQL.select_db() Method ..., 102
11.40 _mysql_connector.MySQL.set_character_set() Methodcoooiiiiiiiiiiiii 103
11.41 _mysql_connector.MySQL.shutdown() Method ..o, 103
11.42 _mysql_connector.MySQL.stat() Methodooouiiiiiiii e 103
11.43 _mysql_connector.MySQL.thread_id() Methodoooiuiiiiii e, 103
11.44 _mysql_connector.MySQL.use_unicode() Methodcc.iiiiiiiiiiiiiii e 103
11.45 mysql_connector.MySQL.warning_count() Methodcc.cooiiiiiiiiiiii e 104
11.46 _mysql_connector.MySQL.have_result_set Propertyc.ccccooviiiiiiiniiiinieeeeee e 104

This chapter contains the public API reference for the Connector/Python C Extension, also known as
the _nysql _connect or Python module.

The nysqgl connect or C Extension module can be used directly without any other code of
Connector/Python. One reason to use this module directly is for performance reasons.

95

_mysgl_connector Module

Note

Examples in this reference use ccnx to represent a connector object as used
with the nysqgl connect or C Extension module. ccnx is an instance of the
_nysqgl _connector. MySQL() class. Itis distinct from the cnx object used in
examples for the nysql . connect or Connector/Python module described in
Chapter 10, Connector/Python APl Reference. cnx is an instance of the object
returned by the connect () method of the My SQ_Connect i on class.

Note

The C Extension is not part of the pure Python installation. It is an optional
module that must be installed using a binary distribution of Connector/Python
that includes it, or compiled using a source distribution. See Chapter 4,
Connector/Python Installation.

11.1 _mysql_connector Module

The mysqgl connect or module provides classes.

11.2 mysql _connector.MySQL() Class

Syntax:

ccnx = _nysql _connector. MySQL(ar gs)

The My SQL class is used to open and manage a connection to a MySQL server (referred to elsewhere
in this reference as “the My SQL instance”). It is also used to send commands and SQL statements and
read results.

The MySQL class wraps most functions found in the MySQL C Client APl and adds some additional
convenient functionality.

i mport _nysql _connect or
ccnx = _nysql _connector. MySQL()
ccnx. connect (user='scott', password='password',

host='127.0.0.1', database='enpl oyees')
ccnx. cl ose()

Permitted arguments for the My SQL class are aut h_pl ugi n, buf f er ed, char set _nane,
connection_timeout,raw, use_uni code. Those arguments correspond to the arguments of the
same names for My SQLConnect i on. connect () as described at Section 7.1, “Connector/Python
Connection Arguments”, except that char set _nane corresponds to char set .

11.3 _mysql _connector.MySQL.affected rows() Method

Syntax:

count = ccnx. affected_rows()

Returns the number of rows changed, inserted, or deleted by the most recent UPDATE, | NSERT, or
DELETE statement.

11.4 mysql _connector.MySQL.autocommit() Method

Syntax:

ccnx. aut oconmi t (bool)

Sets the autocommit mode.

96

https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html

_mysql_connector.MySQL.buffered() Method

Raises a Val ueEr r or exception if node is not Tr ue or Fal se.

11.5 mysql _connector.MySQL.buffered() Method

Syntax:
is_buffered = ccnx. buffered() # getter
ccnx. buf f er ed(bool) # setter

With no argument, returns Tr ue or Fal se to indicate whether the My SQL instance buffers (stores) the
results.

With a boolean argument, sets the My SQL instance buffering mode.

For the setter syntax, raises a TypeEr r or exception if the value is not Tr ue or Fal se.

11.6 _mysql _connector.MySQL.change_user() Method

Syntax:

ccnx. change_user (user =' user _nane,
passwor d=' password_val '
dat abase=' db_nane')

Changes the user and sets a new default database. Permitted arguments are user, passwor d, and
dat abase.

11.7 _mysql _connector.MySQL.character_set name() Method
Syntax:
charset = ccnx.character_set_name()
Returns the name of the default character set for the current MySQL session.

Some MySQL character sets have no equivalent names in Python. When this is the case, a name
usable by Python is returned. For example, the ' ut f 8nb4' MySQL character set name is returned as
"utf8'.

11.8 _mysql _connector.MySQL.close() Method

Syntax:

ccnx. cl ose()

Closes the MySQL connection.

11.9 mysql _connector.MySQL.commit() Method

Syntax:

ccnx. commit ()

Commits the current transaction.

11.10 _mysqgl _connector.MySQL.connect() Method

Syntax:

ccnx. connect (ar gs)

Connects to a MySQL server.

97

_mysqgl_connector.MySQL.connected() Method

i mport _nysql _connect or

ccnx = _nysql _connector. MySQL()

ccnx. connect (user='scott', password="'password'
host='127.0.0.1', database='enpl oyees')

ccnx. cl ose()

connect () supports the following arguments: host , user, passwor d, dat abase, port,
uni x_socket,client _flags,ssl _ca,ssl _cert,ssl_key,ssl _verify cert,conpress.
See Section 7.1, “Connector/Python Connection Arguments”.

If ccnx is already connected, connect () discards any pending result set and closes the connection
before reopening it.

Raises a TypeEr r or exception if any argument is of an invalid type.

11.11 mysqgl _connector.MySQL.connected() Method

Syntax:

i s_connected = ccnx. connected()

Returns Tr ue or Fal se to indicate whether the My SQL instance is connected.

11.12 _mysqgl _connector.MySQL.consume_result() Method

Syntax:

ccnx. consune_resul t ()

Consumes the stored result set, if there is one, for this My SQL instance, by fetching all rows. If the
statement that was executed returned multiple result sets, this method loops over and consumes all of
them.

11.13 _mysqgl _connector.MySQL.convert_to_mysql() Method

Syntax:

converted_obj = ccnx.convert_to_nysql (obj))

Converts a Python object to a MySQL value based on the Python type of the object. The converted
object is escaped and quoted.

ccnx. query(' SELECT CURRENT_USER(), 1 + 3, NOW)')
row = ccnx.fetch_row)
for col in row
print (ccnx.convert _to_nysgl (col))
ccnx. consune_resul t ()

Raises a MySQLI nt er f aceEr r or exception if the Python object cannot be converted.

11.14 mysql _connector.MySQL.escape_string() Method

Syntax:

str = ccnx. escape_string(str_to_escape)

Uses the nysql _escape_string() C API function to create an SQL string that you can use in an
SQL statement.

Raises a TypeEr r or exception if the value does not have a Uni code, byt es, or (for Python 2)
string type. Raises a My SQLEr r or exception if the string could not be escaped.

98

https://dev.mysql.com/doc/c-api/8.0/en/mysql-escape-string.html

_mysql_connector.MySQL.fetch_fields() Method

11.15 mysqgl _connector.MySQL.fetch fields() Method

Syntax:
field_info = ccnx.fetch_fields()
Fetches column information for the active result set. Returns a list of tuples, one tuple per column

Raises a MySQLI nt er f aceEr r or exception for any MySQL error returned by the MySQL server.

ccnx. query(' SELECT CURRENT_USER(), 1 + 3, NOW)')
field_info = ccnx.fetch_fields()
for fi in field_info:
print(fi)
ccnx. consunme_resul t ()

11.16 mysqgl_connector.MySQL.fetch_row() Method

Syntax:

row = ccnx. fetch_row)

Fetches the next row from the active result set. The row is returned as a tuple that contains the values
converted to Python objects, unless r awwas set.

ccnx. query(' SELECT CURRENT_USER(), 1 + 3, NOWN)')
row = ccnx.fetch_row)

print (row)
ccnx. free_result()

Raises a MySQLI nt er f aceEr r or exception for any MySQL error returned by the MySQL server.

11.17 _mysqgl_connector.MySQL.field count() Method

Syntax:

count = ccnx.field_count()

Returns the number of columns in the active result set.

11.18 mysqgl_connector.MySQL.free_result() Method

Syntax:

ccnx. free_result()

Frees the stored result set, if there is one, for this MySQL instance. If the statement that was executed
returned multiple result sets, this method loops over and consumes all of them.

11.19 mysqgl _connector.MySQL.get _character_set _info() Method

Syntax:

info = ccnx. get_character_set_info()

Returns information about the default character set for the current MySQL session. The returned
dictionary has the keys nunber , nane, csnane, conment , di r, nbm nl en, and nbrrax!| en.

11.20 _mysqgl _connector.MySQL.get client_info() Method

Syntax:

99

_mysgl_connector.MySQL.get client_version() Method

info = ccnx.get_client_info()

Returns the MySQL client library version as a string.

11.21 mysqgl _connector.MySQL.get_client_version() Method

Syntax:

info = ccnx.get_client_version()

Returns the MySQL client library version as a tuple.

11.22 mysqgl _connector.MySQL.get_host_info() Method

Syntax:

info = ccnx.get_host _info()

Returns a description of the type of connection in use as a string.

11.23 _mysql_connector.MySQL.get proto_info() Method

Syntax:

info = ccnx.get_proto_info()

Returns the protocol version used by the current session.

11.24 mysqgl _connector.MySQL.get_server_info() Method

Syntax:

info = ccnx. get_server_info()

Returns the MySQL server version as a string.

11.25 mysqgl _connector.MySQL.get server_version() Method

Syntax:

info = ccnx. get_server_version()

Returns the MySQL server version as a tuple.

11.26 _mysqgl_connector.MySQL.get_ssl _cipher() Method

Syntax:

info = ccnx. get_ssl _cipher ()

Returns the SSL cipher used for the current session, or None if SSL is not in use.

11.27 mysqgl_connector.MySQL.hex_string() Method

Syntax:

str = ccnx. hex_string(string_to_hexify)

Encodes a value in hexadecimal format and wraps it within X' ' . For example, " hani becomes
X 68616D .

100

_mysql_connector.MySQL.insert_id() Method

11.28 mysqgl _connector.MySQL.insert_id() Method

Syntax:

insert _id = ccnx.insert_id()

Returns the AUTO | NCREMENT value generated by the most recent executed statement, or O if there is
no such value.

11.29 mysqgl _connector.MySQL.more_results() Method
Syntax:
nore = ccnx. nore_resul ts()

Returns Tr ue or Fal se to indicate whether any more result sets exist.

11.30 _mysqgl _connector.MySQL.next_result() Method
Syntax:
ccnx. next _result()
Initiates the next result set for a statement string that produced multiple result sets.

Raises a MySQLI nt er f aceEr r or exception for any MySQL error returned by the MySQL server.

11.31 _mysqgl_connector.MySQL.num_fields() Method

Syntax:

count = ccnx. num fields()

Returns the number of columns in the active result set.

11.32 _mysqgl_connector.MySQL.num_rows() Method

Syntax:

count = ccnx. num.rows()
Returns the number of rows in the active result set.

Raises a MySQLEr r or exception if there is no result set.

11.33 _mysqgl_connector.MySQL.ping() Method

Syntax:

alive = ccnx. ping()

Returns Tr ue or Fal se to indicate whether the connection to the MySQL server is working.

11.34 _mysqgl _connector.MySQL.query() Method
Syntax:
ccnx. query(args)

Executes an SQL statement. The permitted arguments are st at enrent , buf f er ed, r aw, and
raw_as_string.

101

_mysql_connector.MySQL.raw() Method

ccnx. query(' DROP TABLE I F EXISTS t')

ccnx. query(' CREATE TABLE t (i I NT NOT NULL AUTO_ | NCREMENT PRI MARY KEY)')
ccnx. query(' INSERT INTOt (i) VALUES (NULL), (NULL), (NULL)")

ccnx. query("' SELECT LAST_I NSERT I D()")

row = ccnx. fetch_row)

print('LAST_INSERT_ID(): ', row)

ccnx. consune_resul t ()

buf f er ed and r aw, if not provided, take their values from the My SQL instance. raw_as_stringisa
special argument for Python v2 and returns st r instead of byt ear r ay (compatible with Connector/
Python v1.x).

To check whether the query returns rows, check the have_r esul t _set property of the My SQL
instance.

qguery() returns Tr ue if the query executes, and raises an exception otherwise. It raises a
TypeEr r or exception if any argument has an invalid type, and a MySQLI nt er f aceEr r or exception
for any MySQL error returned by the MySQL server.

11.35 mysqgl _connector.MySQL.raw() Method

Syntax:
is_raw = ccnx. raw() # getter
ccnx. raw(bool) # setter

With no argument, returns Tr ue or Fal se to indicate whether the My SQL instance return the rows as is
(without conversion to Python objects).

With a boolean argument, sets the My SQL instance raw mode.

11.36 _mysqgl_connector.MySQL.refresh() Method

Syntax:

ccnx. refresh(fl ags)

Flushes or resets the tables and caches indicated by the argument. The only argument currently
permitted is an integer.

Raises a TypeEr r or exception if the first argument is not an integer.

11.37 _mysqgl_connector.MySQL.reset_connection() Method

Syntax:

ccnx. reset _connection()

Resets the user variables and session variables for a connection session.

11.38 _mysqgl _connector.MySQL.rollback() Method

Syntax:

ccnx. rol | back()
Rolls back the current transaction.

Raises a MySQLI nt er f aceEr r or exception on errors.

11.39 mysql _connector.MySQL.select_db() Method

102

_mysql_connector.MySQL.set_character_set() Method

Syntax:

ccnx. sel ect _db(db_nane)
Sets the default (current) database for the current session.

Raises a MySQLI nt er f aceEr r or exception for any MySQL error returned by the MySQL server.

11.40 _mysqgl _connector.MySQL.set_character_set() Method
Syntax:
ccnx. set _charact er_set (char set _nane)

Sets the default character set for the current session. The only argument permitted is a string that
contains the character set name.

Raises a TypeErr or exception if the argument is nota PyStri ng_t ype.

11.41 mysqgl_connector.MySQL.shutdown() Method

Syntax:

ccnx. shut down(f | ags)

Shuts down the MySQL server. The only argument currently permitted is an integer that describes the
shutdown type.

Raises a TypeEr r or exception if the first argument is not an integer. Raises a
My SQLEr r or | nt er f ace exception if an error is retured by the MySQL server.

11.42 mysql _connector.MySQL.stat() Method

Syntax:

info = ccnx.stat ()
Returns the server status as a string.

Raises a MySQLEr r or | nt er f ace exception if an error is retured by the MySQL server.

11.43 mysqgl _connector.MySQL.thread_id() Method

Syntax:

thread_id = ccnx.thread_id()

Returns the current thread or connection ID.

11.44 mysqgl_connector.MySQL.use_unicode() Method

Syntax:
i s_uni code = ccnx. use_uni code() # getter
ccnx. use_uni code(bool) # setter

With no argument, returns Tr ue or Fal se to indicate whether the My SQL instance returns nonbinary
strings as Unicode.

With a boolean argument, sets whether the My SQL instance returns nonbinary strings as Unicode.

103

_mysql_connector.MySQL.warning_count() Method

11.45 mysqgl _connector.MySQL.warning_count() Method

Syntax:

count = ccnx.war ni ng_count ()

Returns the number of errors, warnings, and notes produced by the previous SQL statement.

11.46 _mysqgl _connector.MySQL.have result_set Property

Syntax:

has_rows = ccnx. have_result_set

After execution of the quer y() method, this property indicates whether the query returns rows.

104

Index

Symbols

_mysql_connector module, 96
_mysql_connector.MySQL() class, 96
_mysql_connector.MySQL.affected_rows() method, 96
_mysql_connector.MySQL.autocommit() method, 96
_mysql_connector.MySQL.buffered() method, 97
_mysql_connector.MySQL.change_user() method, 97
_mysql_connector.MySQL.character_set_name()
method, 97

_mysql_connector.MySQL.close() method, 97
_mysql_connector.MySQL.commit() method, 97
_mysql_connector.MySQL.connect() method, 97
_mysql_connector.MySQL.connected() method, 98
_mysql_connector.MySQL.consume_result() method,
98

_mysql_connector.MySQL.convert_to_mysql() method,
98

__mysql_connector.MySQL.escape_string() method, 98
_mysql_connector.MySQL.fetch_fields() method, 99
_mysql_connector.MySQL.fetch_row() method, 99
_mysql_connector.MySQL.field_count() method, 99
_mysql_connector.MySQL.free_result() method, 99
_mysql_connector.MySQL.get _character_set_info()
method, 99
_mysql_connector.MySQL.get_client_info() method, 99

_mysql_connector.MySQL.get_client_version() method,

100

_mysql_connector.MySQL.get_host_info() method, 100

_mysql_connector.MySQL.get _proto_info() method,
100

_mysql_connector.MySQL.get_server_info() method,
100

_mysql_connector.MySQL.get_server_version()
method, 100
_mysql_connector.MySQL.get_ssl_cipher() method,
100

_mysql_connector.MySQL.have_result_set property,
104

_mysql_connector.MySQL.hex_string() method, 100
_mysql_connector.MySQL.insert_id() method, 101
_mysql_connector.MySQL.more_results() method, 101
_mysql_connector.MySQL.next_result() method, 101
_mysql_connector.MySQL.num_fields() method, 101
_mysql_connector.MySQL.num_rows() method, 101
_mysql_connector.MySQL.ping() method, 101
_mysql_connector.MySQL.query() method, 101
_mysql_connector.MySQL.raw() method, 102
_mysql_connector.MySQL.refresh() method, 102
_mysql_connector.MySQL.reset_connection() method,
102

_mysql_connector.MySQL.rollback() method, 102
_mysql_connector.MySQL.select_db() method, 102
_mysql_connector.MySQL.set_character_set() method,
103

_mysql_connector.MySQL.shutdown() method, 103

_mysql_connector.MySQL.stat() method, 103
_mysqgl_connector.MySQL.thread_id() method, 103
_mysql_connector.MySQL.use_unicode() method, 103
_mysqgl_connector.MySQL.warning_count() method,

104

C

class
connection.MySQLConnection, 60
constants.CharacterSet, 89
constants.ClientFlag, 88
constants.FieldType, 88
constants.RefreshOption, 89
constants.SQLMode, 89
cursor.MySQLCursor, 76
cursor.MySQLCursorBuffered, 85
cursor.MySQLCursorBufferedDict, 86
cursor.MySQLCursorDict, 86
cursor.MySQLCursorPrepared, 87
cursor.MySQLCursorRaw, 86
pooling.MySQLConnectionPool, 73
pooling.PooledMySQLConnection, 75
_mysqgl_connector.MySQL(), 96
COM_STMT_SEND_LONG_DATA
prepared statements, 88
connection.MySQLConnection class, 60
connection.MySQLConnection() constructor, 60
Connector/Python, 1
constants.CharacterSet class, 89
constants.ClientFlag class, 88
constants.FieldType class, 88
constants.RefreshOption class, 89
constants.SQLMode class, 89
constructor
connection.MySQLConnection(), 60
cursor.MySQLCursor, 76
pooling.MySQLConnectionPool, 73
pooling.PooledMySQLConnection, 75
cursor.mysglcursor
Subclasses, 85
cursor.MySQLCursor class, 76
cursor.MySQLCursor constructor, 76
cursor.MySQLCursorBuffered class, 85
cursor.MySQL CursorBufferedDict class, 86
cursor.MySQLCursorDict class, 86
cursor.MySQLCursorPrepared class, 87
cursor.MySQLCursorRaw class, 86

D
DYLD_LIBRARY_PATH environment variable, 35

E

environment variable
DYLD_LIBRARY_PATH, 35

errorcode module, 90

errors.custom_error_exception() function, 93

errors.DatabaseError exception, 92

105

errors.DataError exception, 92
errors.Error exception, 91
errors.IntegrityError exception, 92
errors.InterfaceError exception, 92
errors.InternalError exception, 92
errors.NotSupportedError exception, 93
errors.OperationalError exception, 93
errors.PoolError exception, 93
errors.ProgrammingError exception, 93
errors.Warning exception, 93
exception
errors.DatabaseError, 92
errors.DataError, 92
errors.Error, 91
errors.IntegrityError, 92
errors.InterfaceError, 92
errors.InternalError, 93
errors.NotSupportedError, 93
errors.OperationalError, 93
errors.PoolError, 93
errors.ProgrammingError, 93
errors.Warning, 93

F

function
errors.custom_error_exception(), 93

M

method
mysql.connector.connect(), 59
MySQLConnection.close(), 60
MySQLConnection.cmd_change_user(), 62
MySQLConnection.cmd_debug(), 63
MySQLConnection.cmd_init_db(), 63
MySQLConnection.cmd_ping(), 63
MySQLConnection.cmd_process_info(), 63
MySQLConnection.cmd_process_kill(), 63
MySQLConnection.cmd_query(), 63
MySQLConnection.cmd_query_iter(), 64
MySQLConnection.cmd_quit(), 64
MySQLConnection.cmd_refresh(), 64

MySQLConnection.cmd_reset_connection(), 65

MySQLConnection.cmd_shutdown(), 65
MySQLConnection.cmd_statistics(), 65
MySQLConnection.commit(), 61
MySQLConnection.config(), 61
MySQLConnection.connect(), 61
MySQLConnection.cursor(), 62
MySQLConnection.disconnect(), 65
MySQLConnection.get_row(), 65
MySQLConnection.get_rows(), 65
MySQLConnection.get_server_info(), 66
MySQLConnection.get_server_version(), 66
MySQLConnection.isset_client_flag(), 66
MySQLConnection.is_connected(), 66
MySQLConnection.ping(), 66
MySQLConnection.reconnect(), 67

MySQLConnection.reset_session(), 67
MySQLConnection.rollback(), 67
MySQLConnection.set_charset_collation(), 67
MySQLConnection.set_client_flags(), 68
MySQLConnection.shutdown(), 68
MySQLConnection.start_transaction(), 68
MySQLConnectionPool.add_connection(), 74
MySQLConnectionPool.get_connection(), 74
MySQLConnectionPool.set_config(), 74
MySQLCursor.add_attribute(), 77
MySQLCursor.callproc(), 78
MySQLCursor.clear_attributes(), 77
MySQLCursor.close(), 78
MySQLCursor.execute(), 79
MySQLCursor.executemany(), 79
MySQLCursor.fetchall(), 80
MySQLCursor.fetchmany(), 80
MySQLCursor.fetchone(), 80
MySQLCursor.fetchsets(), 81
MySQLCursor.fetchwarnings(), 82
MySQLCursor.get_attributes(), 78
MySQLCursor.nextset(), 81
MySQLCursor.stored_results(), 82
PooledMySQLConnection.close(), 75
PooledMySQLConnection.config(), 75
_mysql_connector.MySQL.affected_rows(), 96
_mysqgl_connector.MySQL.autocommit(), 96
_mysqgl_connector.MySQL.buffered(), 97
_mysql_connector.MySQL.change_user(), 97
_mysqgl_connector.MySQL.character_set_name(), 97
_mysql_connector.MySQL.close(), 97
_mysqgl_connector.MySQL.commit(), 97
_mysqgl_connector.MySQL.connect(), 97
_mysqgl_connector.MySQL.connected(), 98
_mysqgl_connector.MySQL.consume_result(), 98
_mysqgl_connector.MySQL.convert_to_mysql(), 98
_mysql_connector.MySQL.escape_string(), 98
_mysqgl_connector.MySQL.fetch_fields(), 99
_mysqgl_connector.MySQL.fetch_row(), 99
_mysqgl_connector.MySQL.field_count(), 99
_mysql_connector.MySQL.free_result(), 99
_mysql_connector.MySQL.get _character_set_info(),
99

_mysql_connector.MySQL.get_client_info(), 99
_mysql_connector.MySQL.get_client_version(), 100
_mysql_connector.MySQL.get_host_info(), 100
_mysql_connector.MySQL.get_proto_info(), 100
_mysql_connector.MySQL.get_server_info(), 100
_mysqgl_connector.MySQL.get_server_version(), 100
_mysqgl_connector.MySQL.get_ssl_cipher(), 100
_mysqgl_connector.MySQL.hex_string(), 100
_mysqgl_connector.MySQL.insert_id(), 101
_mysql_connector.MySQL.more_results(), 101
_mysql_connector.MySQL.next_result(), 101
_mysql_connector.MySQL.num_fields(), 101
_mysqgl_connector.MySQL.num_rows(), 101
_mysql_connector.MySQL.ping(), 101
_mysql_connector.MySQL.query(), 101

106

_mysql_connector.MySQL.raw(), 102
_mysql_connector.MySQL.refresh(), 102
_mysql_connector.MySQL.reset_connection(), 102
_mysql_connector.MySQL.rollback(), 102
_mysql_connector.MySQL.select_db(), 103
_mysql_connector.MySQL.set_character_set(), 103
_mysql_connector.MySQL.shutdown(), 103
_mysql_connector.MySQL.stat(), 103
_mysql_connector.MySQL.thread_id(), 103
_mysql_connector.MySQL.use_unicode(), 103
_mysql_connector.MySQL.warning_count(), 104
module
errorcode, 90
mysql.connector, 59
__mysql_connector, 96
mysql.connector module, 59
mysql.connector.apilevel property, 59
mysql.connector.connect() method, 59
mysql.connector.paramstyle property, 60
mysql.connector.threadsafety property, 60
mysql.connector.__version_info__ property, 60
mysql.connector.__version__ property, 60
MySQLConnection.autocommit property, 69
MySQLConnection.can_consume_results property, 69
MySQLConnection.charset property, 69
MySQLConnection.client_flags property, 69
MySQLConnection.close() method, 60
MySQLConnection.cmd_change_user() method, 62
MySQLConnection.cmd_debug() method, 63
MySQLConnection.cmd_init_db() method, 63
MySQLConnection.cmd_ping() method, 63
MySQLConnection.cmd_process_info() method, 63
MySQLConnection.cmd_process_kill() method, 63
MySQLConnection.cmd_query() method, 63
MySQLConnection.cmd_query_iter() method, 64
MySQLConnection.cmd_quit() method, 64
MySQLConnection.cmd_refresh() method, 64
MySQLConnection.cmd_reset_connection() method,
65
MySQLConnection.cmd_shutdown() method, 65
MySQLConnection.cmd_statistics() method, 65
MySQLConnection.collation property, 70
MySQLConnection.commit() method, 61
MySQLConnection.config() method, 61
MySQLConnection.connect() method, 61
MySQLConnection.connected property, 70
MySQLConnection.connection_id property, 70
MySQLConnection.converter-class property, 70
MySQLConnection.cursor() method, 62
MySQLConnection.database property, 70
MySQLConnection.disconnect() method, 65
MySQLConnection.get_row() method, 65
MySQLConnection.get_rows() method, 65
MySQLConnection.get_server_info() method, 66
MySQLConnection.get_server_version() method, 66
MySQLConnection.get_warnings property, 71
MySQLConnection.in_transaction property, 71
MySQLConnection.isset_client_flag() method, 66

MySQLConnection.is_connected() method, 66
MySQLConnection.ping() method, 66
MySQLConnection.raise_on_warnings property, 71
MySQLConnection.reconnect() method, 67
MySQLConnection.reset_session() method, 67
MySQLConnection.rollback() method, 67
MySQLConnection.server_host property, 72
MySQLConnection.server_info property, 72
MySQLConnection.server_port property, 72
MySQLConnection.server_version property, 72
MySQLConnection.set_charset_collation() method, 67
MySQLConnection.set_client_flags() method, 68
MySQLConnection.shutdown() method, 68
MySQLConnection.sgl_mode property, 72
MySQLConnection.start_transaction() method, 68
MySQLConnection.time_zone property, 72
MySQLConnection.unix_socket property, 73
MySQLConnection.unread_results property, 69
MySQLConnection.user property, 73
MySQLConnection.use_unicode property, 72
MySQLConnectionPool.add_connection() method, 74
MySQLConnectionPool.get_connection() method, 74
MySQLConnectionPool.pool_name property, 74
MySQLConnectionPool.set_config() method, 74
MySQLCursor.add_attribute() method, 77
MySQLCursor.callproc() method, 78
MySQLCursor.clear_attributes() method, 77
MySQLCursor.close() method, 78
MySQLCursor.column_names property, 82
MySQLCursor.description property, 83
MySQLCursor.execute() method, 79
MySQLCursor.executemany() method, 79
MySQLCursor.fetchall() method, 80
MySQLCursor.fetchmany() method, 80
MySQLCursor.fetchone() method, 80
MySQLCursor.fetchsets() method, 81
MySQLCursor.fetchwarnings() method, 82
MySQLCursor.get_attributes() method, 78
MySQLCursor.lastrowid property, 84
MySQLCursor.nextset() method, 81
MySQLCursor.rowcount property, 84
MySQLCursor.statement property, 84
MySQLCursor.stored_results() method, 82
MySQLCursor.warnings property, 83
MySQLCursor.with_rows property, 85

P

PEP 249, 1
PooledMySQLConnection.close() method, 75
PooledMySQLConnection.config() method, 75
PooledMySQLConnection.pool_name property, 75
pooling.MySQLConnectionPool class, 73
pooling.MySQLConnectionPool constructor, 73
pooling.PooledMySQLConnection class, 75
pooling.PooledMySQLConnection constructor, 75
prepared statements, 87
property

mysql.connector.apilevel, 59

107

mysql.connector.paramstyle, 60
mysql.connector.threadsafety, 60
mysql.connector.__version_info__, 60
mysql.connector.__version__, 60
MySQLConnection.autocommit, 69
MySQLConnection.can_consume_results, 69
MySQLConnection.charset, 69
MySQLConnection.client_flags, 69
MySQLConnection.collation, 70
MySQLConnection.connected, 70
MySQLConnection.connection_id, 70
MySQLConnection.converter-class, 70
MySQLConnection.database, 70
MySQLConnection.get_warnings, 71
MySQLConnection.in_transaction, 71
MySQLConnection.raise_on_warnings, 71
MySQLConnection.server_host, 72
MySQLConnection.server_info, 72
MySQLConnection.server_port, 72
MySQLConnection.server_version, 72
MySQLConnection.sgl_mode, 72
MySQLConnection.time_zone, 72
MySQLConnection.unix_socket, 73
MySQLConnection.unread_results, 69
MySQLConnection.user, 73
MySQLConnection.use_unicode, 72
MySQLConnectionPool.pool_name, 74
MySQLCursor.column_names, 82
MySQLCursor.description, 83
MySQLCursor.lastrowid, 84
MySQLCursor.rowcount, 84
MySQLCursor.statement, 84
MySQLCursor.warnings, 84
MySQLCursor.with_rows, 85
PooledMySQLConnection.pool_name, 75
_mysql_connector.MySQL.have_result_set, 104

Python, 1

Python Database API Specification v2.0 (PEP 249), 1

S

Subclasses cursor.mysqglcursor, 85

108

	MySQL Connector/Python Developer Guide
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Introduction to MySQL Connector/Python
	Chapter 2 Guidelines for Python Developers
	Chapter 3 Connector/Python Versions
	Chapter 4 Connector/Python Installation
	4.1 Quick Installation Guide
	4.2 Differences Between Binary And Source Distributions
	4.3 Obtaining Connector/Python
	4.4 Installing Connector/Python from a Binary Distribution
	4.4.1 Installing Connector/Python with pip
	4.4.2 Installing by RPMs
	4.4.2.1 Using the MySQL Yum Repository
	4.4.2.2 Using an RPM Package

	4.5 Installing Connector/Python from a Source Distribution
	4.6 Verifying Your Connector/Python Installation

	Chapter 5 Connector/Python Coding Examples
	5.1 Connecting to MySQL Using Connector/Python
	5.2 Creating Tables Using Connector/Python
	5.3 Inserting Data Using Connector/Python
	5.4 Querying Data Using Connector/Python

	Chapter 6 Connector/Python Tutorials
	6.1 Tutorial: Raise Employee's Salary Using a Buffered Cursor

	Chapter 7 Connector/Python Connection Establishment
	7.1 Connector/Python Connection Arguments
	7.2 Connector/Python Option-File Support

	Chapter 8 The Connector/Python C Extension
	8.1 Application Development with the Connector/Python C Extension
	8.2 The _mysql_connector C Extension Module

	Chapter 9 Connector/Python Other Topics
	9.1 Connector/Python Logging
	9.2 Telemetry Support
	9.3 Executing Multiple Statements
	9.4 Asynchronous Connectivity
	9.5 Connector/Python Connection Pooling
	9.6 Connector/Python Django Back End

	Chapter 10 Connector/Python API Reference
	10.1 mysql.connector Module
	10.1.1 mysql.connector.connect() Method
	10.1.2 mysql.connector.apilevel Property
	10.1.3 mysql.connector.paramstyle Property
	10.1.4 mysql.connector.threadsafety Property
	10.1.5 mysql.connector.__version__ Property
	10.1.6 mysql.connector.__version_info__ Property

	10.2 connection.MySQLConnection Class
	10.2.1 connection.MySQLConnection() Constructor
	10.2.2 MySQLConnection.close() Method
	10.2.3 MySQLConnection.commit() Method
	10.2.4 MySQLConnection.config() Method
	10.2.5 MySQLConnection.connect() Method
	10.2.6 MySQLConnection.cursor() Method
	10.2.7 MySQLConnection.cmd_change_user() Method
	10.2.8 MySQLConnection.cmd_debug() Method
	10.2.9 MySQLConnection.cmd_init_db() Method
	10.2.10 MySQLConnection.cmd_ping() Method
	10.2.11 MySQLConnection.cmd_process_info() Method
	10.2.12 MySQLConnection.cmd_process_kill() Method
	10.2.13 MySQLConnection.cmd_query() Method
	10.2.14 MySQLConnection.cmd_query_iter() Method
	10.2.15 MySQLConnection.cmd_quit() Method
	10.2.16 MySQLConnection.cmd_refresh() Method
	10.2.17 MySQLConnection.cmd_reset_connection() Method
	10.2.18 MySQLConnection.cmd_shutdown() Method
	10.2.19 MySQLConnection.cmd_statistics() Method
	10.2.20 MySQLConnection.disconnect() Method
	10.2.21 MySQLConnection.get_row() Method
	10.2.22 MySQLConnection.get_rows() Method
	10.2.23 MySQLConnection.get_server_info() Method
	10.2.24 MySQLConnection.get_server_version() Method
	10.2.25 MySQLConnection.is_connected() Method
	10.2.26 MySQLConnection.isset_client_flag() Method
	10.2.27 MySQLConnection.ping() Method
	10.2.28 MySQLConnection.reconnect() Method
	10.2.29 MySQLConnection.reset_session() Method
	10.2.30 MySQLConnection.rollback() Method
	10.2.31 MySQLConnection.set_charset_collation() Method
	10.2.32 MySQLConnection.set_client_flags() Method
	10.2.33 MySQLConnection.shutdown() Method
	10.2.34 MySQLConnection.start_transaction() Method
	10.2.35 MySQLConnection.autocommit Property
	10.2.36 MySQLConnection.unread_results Property
	10.2.37 MySQLConnection.can_consume_results Property
	10.2.38 MySQLConnection.charset Property
	10.2.39 MySQLConnection.client_flags Property
	10.2.40 MySQLConnection.collation Property
	10.2.41 MySQLConnection.connected Property
	10.2.42 MySQLConnection.connection_id Property
	10.2.43 MySQLConnection.converter-class Property
	10.2.44 MySQLConnection.database Property
	10.2.45 MySQLConnection.get_warnings Property
	10.2.46 MySQLConnection.in_transaction Property
	10.2.47 MySQLConnection.raise_on_warnings Property
	10.2.48 MySQLConnection.server_host Property
	10.2.49 MySQLConnection.server_info Property
	10.2.50 MySQLConnection.server_port Property
	10.2.51 MySQLConnection.server_version Property
	10.2.52 MySQLConnection.sql_mode Property
	10.2.53 MySQLConnection.time_zone Property
	10.2.54 MySQLConnection.use_unicode Property
	10.2.55 MySQLConnection.unix_socket Property
	10.2.56 MySQLConnection.user Property

	10.3 pooling.MySQLConnectionPool Class
	10.3.1 pooling.MySQLConnectionPool Constructor
	10.3.2 MySQLConnectionPool.add_connection() Method
	10.3.3 MySQLConnectionPool.get_connection() Method
	10.3.4 MySQLConnectionPool.set_config() Method
	10.3.5 MySQLConnectionPool.pool_name Property

	10.4 pooling.PooledMySQLConnection Class
	10.4.1 pooling.PooledMySQLConnection Constructor
	10.4.2 PooledMySQLConnection.close() Method
	10.4.3 PooledMySQLConnection.config() Method
	10.4.4 PooledMySQLConnection.pool_name Property

	10.5 cursor.MySQLCursor Class
	10.5.1 cursor.MySQLCursor Constructor
	10.5.2 MySQLCursor.add_attribute() Method
	10.5.3 MySQLCursor.clear_attributes() Method
	10.5.4 MySQLCursor.get_attributes() Method
	10.5.5 MySQLCursor.callproc() Method
	10.5.6 MySQLCursor.close() Method
	10.5.7 MySQLCursor.execute() Method
	10.5.8 MySQLCursor.executemany() Method
	10.5.9 MySQLCursor.fetchall() Method
	10.5.10 MySQLCursor.fetchmany() Method
	10.5.11 MySQLCursor.fetchone() Method
	10.5.12 MySQLCursor.nextset() Method
	10.5.13 MySQLCursor.fetchsets() Method
	10.5.14 MySQLCursor.fetchwarnings() Method
	10.5.15 MySQLCursor.stored_results() Method
	10.5.16 MySQLCursor.column_names Property
	10.5.17 MySQLCursor.description Property
	10.5.18 MySQLCursor.warnings Property
	10.5.19 MySQLCursor.lastrowid Property
	10.5.20 MySQLCursor.rowcount Property
	10.5.21 MySQLCursor.statement Property
	10.5.22 MySQLCursor.with_rows Property

	10.6 Subclasses cursor.MySQLCursor
	10.6.1 cursor.MySQLCursorBuffered Class
	10.6.2 cursor.MySQLCursorRaw Class
	10.6.3 cursor.MySQLCursorDict Class
	10.6.4 cursor.MySQLCursorBufferedDict Class
	10.6.5 cursor.MySQLCursorPrepared Class

	10.7 constants.ClientFlag Class
	10.8 constants.FieldType Class
	10.9 constants.SQLMode Class
	10.10 constants.CharacterSet Class
	10.11 constants.RefreshOption Class
	10.12 Errors and Exceptions
	10.12.1 errorcode Module
	10.12.2 errors.Error Exception
	10.12.3 errors.DataError Exception
	10.12.4 errors.DatabaseError Exception
	10.12.5 errors.IntegrityError Exception
	10.12.6 errors.InterfaceError Exception
	10.12.7 errors.InternalError Exception
	10.12.8 errors.NotSupportedError Exception
	10.12.9 errors.OperationalError Exception
	10.12.10 errors.PoolError Exception
	10.12.11 errors.ProgrammingError Exception
	10.12.12 errors.Warning Exception
	10.12.13 errors.custom_error_exception() Function

	Chapter 11 Connector/Python C Extension API Reference
	11.1 _mysql_connector Module
	11.2 _mysql_connector.MySQL() Class
	11.3 _mysql_connector.MySQL.affected_rows() Method
	11.4 _mysql_connector.MySQL.autocommit() Method
	11.5 _mysql_connector.MySQL.buffered() Method
	11.6 _mysql_connector.MySQL.change_user() Method
	11.7 _mysql_connector.MySQL.character_set_name() Method
	11.8 _mysql_connector.MySQL.close() Method
	11.9 _mysql_connector.MySQL.commit() Method
	11.10 _mysql_connector.MySQL.connect() Method
	11.11 _mysql_connector.MySQL.connected() Method
	11.12 _mysql_connector.MySQL.consume_result() Method
	11.13 _mysql_connector.MySQL.convert_to_mysql() Method
	11.14 _mysql_connector.MySQL.escape_string() Method
	11.15 _mysql_connector.MySQL.fetch_fields() Method
	11.16 _mysql_connector.MySQL.fetch_row() Method
	11.17 _mysql_connector.MySQL.field_count() Method
	11.18 _mysql_connector.MySQL.free_result() Method
	11.19 _mysql_connector.MySQL.get_character_set_info() Method
	11.20 _mysql_connector.MySQL.get_client_info() Method
	11.21 _mysql_connector.MySQL.get_client_version() Method
	11.22 _mysql_connector.MySQL.get_host_info() Method
	11.23 _mysql_connector.MySQL.get_proto_info() Method
	11.24 _mysql_connector.MySQL.get_server_info() Method
	11.25 _mysql_connector.MySQL.get_server_version() Method
	11.26 _mysql_connector.MySQL.get_ssl_cipher() Method
	11.27 _mysql_connector.MySQL.hex_string() Method
	11.28 _mysql_connector.MySQL.insert_id() Method
	11.29 _mysql_connector.MySQL.more_results() Method
	11.30 _mysql_connector.MySQL.next_result() Method
	11.31 _mysql_connector.MySQL.num_fields() Method
	11.32 _mysql_connector.MySQL.num_rows() Method
	11.33 _mysql_connector.MySQL.ping() Method
	11.34 _mysql_connector.MySQL.query() Method
	11.35 _mysql_connector.MySQL.raw() Method
	11.36 _mysql_connector.MySQL.refresh() Method
	11.37 _mysql_connector.MySQL.reset_connection() Method
	11.38 _mysql_connector.MySQL.rollback() Method
	11.39 _mysql_connector.MySQL.select_db() Method
	11.40 _mysql_connector.MySQL.set_character_set() Method
	11.41 _mysql_connector.MySQL.shutdown() Method
	11.42 _mysql_connector.MySQL.stat() Method
	11.43 _mysql_connector.MySQL.thread_id() Method
	11.44 _mysql_connector.MySQL.use_unicode() Method
	11.45 _mysql_connector.MySQL.warning_count() Method
	11.46 _mysql_connector.MySQL.have_result_set Property

	Index

