
Expectation vs. Experience: Evaluating the Usability of Code
Generation Tools Powered by Large Language Models
Priyan Vaithilingam

pvaithilingam@g.harvard.edu
Harvard University

USA

Tianyi Zhang
tianyi@purdue.edu
Purdue University

USA

Elena Glassman
glassman@seas.harvard.edu

Harvard University
USA

ABSTRACT
Recent advances in Large Language Models (LLM) have made auto-
matic code generation possible for real-world programming tasks in
general-purpose programming languages such as Python. However,
there are few human studies on the usability of these tools and how
they fit the programming workflow. In this work, we conducted
a within-subjects user study with 24 participants to understand
how programmers use and perceive Copilot, a LLM-based code
generation tool. We found that, while Copilot did not necessarily
improve the task completion time or success rate, most partici-
pants preferred to use Copilot in daily programming tasks, since
Copilot often provided a useful starting point and saved the effort
of searching online. However, participants did face difficulties in
understanding, editing, and debugging code snippets generated
by Copilot, which significantly hindered their task-solving effec-
tiveness. Finally, we highlighted several promising directions for
improving the design of Copilot based on our observations and
participants’ feedback.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in HCI.

KEYWORDS
large language model, github copilot

ACM Reference Format:
Priyan Vaithilingam, Tianyi Zhang, and Elena Glassman. 2022. Expectation
vs. Experience: Evaluating the Usability of Code Generation Tools Pow-
ered by Large Language Models. In CHI Conference on Human Factors in
Computing Systems Extended Abstracts (CHI ’22 Extended Abstracts), April
29-May 5, 2022, New Orleans, LA, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3491101.3519665

1 INTRODUCTION
Automatic code generation has been a long-term goal for multiple
research communities including Programming Languages (PL), Soft-
ware Engineering (SE), Natural Language Processing (NLP), andMa-
chine Learning (ML). Recent attempts to achieve this have focused

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9156-6/22/04. . . $15.00
https://doi.org/10.1145/3491101.3519665

on two different kinds of approaches: (1) program synthesis algo-
rithms that search over a large program space defined by a domain-
specific language (DSL) [2, 7, 10, 12, 14, 19, 24, 25, 30, 31, 34, 43],
and (2) deep learning models that are trained on a large amount
of existing code and can generate new code given some forms of
specifications such as natural language descriptions or incomplete
code [5, 16, 17, 22, 38, 39, 48, 49]. Both kinds of approaches have
clear drawbacks. On the one hand, existing program synthesis tech-
niques are constrained to pre-defined DSLs and cannot scale to
general-purpose programming languages [15]. On the other hand,
existing generative models have a hard time learning sophisticated
programming patterns from code corpora and often generate code
with syntactic or semantic errors [9, 29, 40]. The recent development
of Large Language Models (LLM) such as GPT-3 [32] has opened up
new opportunities for addressing the limitations of existing code
generation techniques. For example, Codex [50], which contains
12 billion model parameters and is trained on 54 million software
repositories on GitHub, has demonstrated stunning code genera-
tion capability—solving over 70% of 164 Python programming tasks
with 100 samples [8].

The performance of LLM-based code generation tools has been
extensively studied using benchmarks [8, 33]. However, little is
known about the usability and programmers’ perception of such a
tool in a real-world programming workflow. To bridge the gap, we
conducted a within-subjects comparative studywith 24 participants,
in which participants were asked to complete Python programming
tasks. In the experimental condition, participants wrote programs
with the assistance of Copilot, a Visual Studio Code (VSCode) plugin
powered by Codex [13]. In the control condition, participants wrote
programs with the assistance of Intellisense, the default code com-
pletion plugin in VSCode. We investigated the following research
questions:

• RQ1: How does using Copilot affect the programming expe-
rience?

• RQ2: How do users recognize errors in code generated by
Copilot?

• RQ3:What coping mechanisms do users employ when they
find errors in code generated by Copilot?

• RQ4:What are the obstacles and limitations that can prevent
adoption of Copilot?

Our key findings are: (1) the majority of the participants (19 out
of 24) preferred using Copilot over Intellisense (Control condition);
(2) Copilot provides a useful starting point for participants to kick
start the task and saved them the effort of searching online; (3) There
is a need to identify better ways for participants to understand long
blocks of generated code to help them edit, debug, and repair the
code.

CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA Priyan Vaithilingam, Tianyi Zhang, and Elena Glassman

2 RELATEDWORK
2.1 AI-based Code Generation
There is a long history of research on automated code genera-
tion. Some of the earliest work dates back to the 1960s, where
Waldinger and Lee presented a program synthesizer called PROW
that automatically generated LISP programs based on user-provided
specifications in the form of a predicate calculus [41].

There are two main trends in modern automatic code generation:
program synthesis and machine learning. Program Synthesis pri-
marily uses a search-based technique to generate code that fulfills
a given specification. These techniques work on a subset of the
language components relevant to the domain known as Domain-
Specific Languages (DSLs). More recently, program synthesis has
been applied to a variety of domains, e.g., low-level bit-vector im-
plementations [36], data manipulation in excel [14], and regular
expression synthesis [51]. The main limitation is that these tech-
niques are limited to a pre-defined DSL, making it less scalable
to programs written in general-purpose programming languages
such as Java or Python. Because general-purpose programming
languages include much more language features and syntax rules
compared with DSLs and therefore define a much bigger program
space to search from [15].

The second trend is using machine learning, especially deep
learning. Advances in deep learning have shown promising re-
sults on automatically generating code for real-world programming
tasks [5, 16, 17, 22, 38, 39, 48, 49]. For instance, Kim et al. [21] de-
veloped a transformer architecture that is aware of code structures
using abstract syntax trees. Alon et al. [1] introduced structural
language models that remove any restriction on the vocabulary or
structure— the main limitation of program synthesis techniques.
Karampatsis and Sutton [20] similarly introduced open-vocabulary
models that can generate code with an arbitrary number of tokens.
Though these methods have shown promising results, they still
suffer from low accuracy and are less reliable [9, 29, 40]. For in-
stance, Ciniselli et al. [9] show their RoBERTa-based model can
only produce correct solutions for 7% of the tasks from the Code-
SearchNet benchmark [18].

The recent advances in large languagemodels (LLM) such as GPT-
3 [32] have led to a breakthrough in automated code generation
compared to prior state-of-the-art deep learning methods [4, 6,
42]. For example, Codex [50], a fine-tuned version of GPT-3, can
generate fully correct code for 29% of unseen programming tasks
with only one sample of generated programs and 72% of them with
100 samples, while a widely used code generation tool, TabNine [39]
can only solve 3% and 8%, respectively [8].

While there has been recent work evaluating the accuracy of
LLM-based code generation tools [8, 33], little is known about its
usability. With such increases in accuracy, how will programmers
interact with a tool that generates almost accurate yet not perfect
code? How easy or difficult is it for programmers to recognize
errors in a code snippet that is almost but not quite correct? Will
they simply modify the incorrect part or completely rewrite the
entire code themselves? This motivates us to study programmers’
expectations, coping strategies, and needs for such powerful code
generation tools.

2.2 Coping with Imperfect AI
Prior studies have examined how users interact with imperfect
AI [11, 23, 26–28, 35, 37, 45]. Dzindolet et al. [11] showed that once
people observed an automated system make errors, their distrust in
the system increased unless an explanation was provided. However,
these explanations may also lead to over-reliance on the system
even when unwarranted, signaling the importance and difficulty
of providing explanations that help people to calibrate trust appro-
priately. Kocielnik et al. [23] examined the effect of giving people
control over the types of errors made by a scheduling assistant,
either by avoiding false positives or false negatives. They found
that even when the system was only 50% accurate, users who ex-
pected a reduction in the false positive rate had a lower perception
of accuracy and lower acceptance of the system than the users who
expected a reduction in the false negative rate. [3, 52] showed that
confidence scores helped calibrate users’ trust, form a good mental
model of the AI, and understand the error boundaries better.

Similar to other AI techniques, AI-based code generation tools
also suffer from inherent uncertainty and imperfection. They may
inevitably generate code with errors or even code that wildly differs
from users’ expectations. However, unlike other domains, code
generation demands a much higher level of correctness: code either
compiles or not, and it is either correct or contains bugs such as
logic errors and security vulnerabilities. Therefore, existing findings
of other types of AI techniques may not generalize to the domain
of code generation.

Currently, there are only a few studies on how programmers
use such imperfect code generation tools [44, 47]. Xu et al. [47] did
a user study with 31 participants to evaluate the usefulness of a
NL-to-code plugin [46]. They found that there was no statistically
significant difference in task completion time or task correctness
scores when using or not using the NL-to-code plugin. Furthermore,
most participants stayed neural or somewhat positive to the NL-
to-code plugin. The main reason for these negative results was the
correctness and quality of generated code as pointed out by many
participants in the post-study survey. However, these findings may
not hold as more recent large language models have significantly
boosted the correctness and quality of generated code. This further
motivates us to conduct the user study with Copilot.

Weisz et al. [44] interviewed 11 software engineers at IBM and
solicited their feedback on a neural machine translation (NMT)
model for an adjacent domain—translating code from one program-
ming language to another. They found that the user’s acceptance
of the NMT model was contingent on the number of errors in the
translated code. They also identified several common themes in
participants’ feedback such as acceptance via verification and the
desire to provide guidance to the NMT model. Our study was de-
signed to complement this knowledge but for daily programming
tasks.

3 STUDY DESIGN
To understand how programmers use an LLM-based code genera-
tion tool, we designed and carried out awithin-subjects comparative
study with 24 participants. For the control condition, each partici-
pant was asked to complete a Python programming task in Visual
Studio Code (VSCode) IDE with the default code completion tool

Expectation vs. Experience: Evaluating the Usability of Code
Generation Tools Powered by Large Language Models CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA

called Intellisense. Intellisense suggests a drop-down list of valid
tokens in the current code context, ordered by alphabetical order
or relevance. The users can select the token they want and press
the Tab button to accept the suggested token or the Esc button to
reject it.

For the experiment condition, each participant finished another
Python programming task in VSCode with Copilot. Similar to Intel-
lisene, Copilot can automatically suggest code based on the current
code context as a programmer is typing. While Intellisense only
predicts one token at a time, Copilot is capable of generating multi-
ple lines of code. The participants can press Tab to accept the code
suggestion or Esc to reject. Though not required, participants can
give prompts to Copilot by writing comments. Henceforth, when
we mention prompts in the text, we refer to comments written by
the participants in the code specifically to guide Copilot.

3.1 Tasks
We selected three real-world python programming tasks with dif-
ferent levels of difficulty from [47].

• Task 1. Edit CSV (Easy): Write a program to read CSV data
from the ‘data.csv’ file. Delete the first column and the last
column. Save it to the ‘output.csv’ file.

• Task 2. Web Scrapping (Medium): Given the URL of a web
page, write a program that extracts the URLs of all hyperlinks
in the web page and save the URLs to a file named ‘urls.txt’.

• Task 3. Graph Plotting (Hard): Write a program to draw a
scatter plot of the data in ‘shampoo.csv’ and save it to ‘sham-
poo.png’. The plot size should be 10 inches wide and 6 inches
high. The Date column is the x-axis. The date string shown
on the plot should be in the YYYY-MM-DD format. The
Sales column is the y-axis. The graph should have the title
“Shampoo Sales Trend”.

3.2 Participants
We recruited 24 participants (4 Female, 19 Male, 1 Non-binary)
through mailing lists of two research universities. Ten participants
were undergraduate students, 5 were master’s student, 8 were
Ph.D. students, and 1 was a software engineer. Regarding their
familiarity with programming, only 1 participant had less than 2
years of programming experience, 14 participants have 2-5 years
of experience, and 9 participants have over 5 years of experience.
Participants received a $20 Amazon gift card as compensation for
their time.

3.3 Protocol
To enable easy access to the code generation tools, we set up two vir-
tual machines (VMs) in Microsoft Azure, one with Copilot installed
and the other with IntelliSense installed. We also pre-installed VS-
Code and several popular Python packages in both VMs. Partici-
pants can easily log into each VM from their laptop to start the user
study. We recorded the audio and the screen-cast with the consent
of each participant. In each study session, a participant completed
one of the three tasks using Copilot (i.e. the experiment condition)
and another task with Intellisense (i.e. the control condition). To
emulate real-world programming experience, the participants were

allowed to use Internet search or refer to any online resources any-
time during the task. To mitigate the learning effect, both the order
of task assignment and the order of tool assignment was counterbal-
anced across participants through random assignment. Therefore,
for each unique combination of 3 tasks and 2 conditions, we have
8 participant data points. Before each task, the participants were
given a quick tutorial of the assigned tool. We set a time limit of 20
minutes for each programming task. A task was considered failed
if participants did not complete it within 20 minutes. After each
task, participants answered a survey to reflect on their experience
using the tool. After finishing both tasks, participants answered a
final survey to directly compare the two conditions. The first au-
thor performed open-coding on participants’ responses to identify
themes and then discussed with co-authors to refine the themes
over multiple sessions. These themes were then used to explain the
results in the following sessions.

4 RESULTS
This section describes both the quantitative and qualitative results
of our study. Quantitative results include the task completion time,
task failure rates, and metrics from survey responses. In the qual-
itative results subsection, we describe the common themes that
emerged through open coding of participant comments and experi-
menter observations made during the study.

4.1 Quantitative
Participants using Copilot failed to complete tasks more often than
participants using Intellisense. Table 1 shows individual and average
task completion times. Table cells in the orange background indicate
sessions in which participants did not solve the task within 20
minutes. When using Copilot, all 8 participants working on the
easiest task completed it, 6 out of 8 participants working on the
medium-difficulty task completed it, and 5 out of 8 participants
working on the hardest task completed it within the allotted time.
In contrast, when using Intellisense, all 8 participants in both the
easiest and medium-difficulty task conditions completed their tasks,
and only 2 participants failed to complete the hardest task. Overall
task difficulties, Intellisense users failed twice while Copilot users
failed 5 times. This difference is not statistically significant.

We analyzed the session recordings to identify the root cause of
these task failures. Out of the 5 task failures when using Copilot, 3
were caused by incorrect code generated by Copilot, which led par-
ticipants into a time-consuming debugging rabbit hole (discussed
in Section 4.2.4). The other two were caused by the participants’
inexperience with the relevant Python libraries (graph plotting and
HTML parsing libraries) and the debugging features of the IDE. In
contrast, participants using Intellisense failed to finish the 2 tasks
due to their inexperience with a graph plotting library.

While Copilot users completed fewer tasks than Intellisense
users, the tasks completed with Copilot were done more quickly on
average (see the last row of Table 1). The overall mean difference of
task completion time using Copilot vs. Intellisense is about 1 min.
Yet the mean difference is not statistically significant (student t-test,
p = 0.53).

CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA Priyan Vaithilingam, Tianyi Zhang, and Elena Glassman

Task 1 - Easy Task 2 - Medium Task 3 - Hard
Intellisense Copilot Intellisense Copilot Intellisense Copilot

9:35 1:46 7:48 12:53 13:41 11:08
3:50 3:57 15:52 16:45 13:43 11:05
4:49 4:55 16:28 7:26 22:42 4:04
9:04 6:18 14:16 15:05 13:06 DNF
5:18 1:18 7:35 13:24 23:13 19:54
15:54 7:52 12:39 DNF 4:48 DNF
5:27 3:12 10:47 6:02 DNF DNF
2:09 20:12 8:30 DNF DNF 9:19

Average Time 7:01 6:11 11:44 11:56 13:36 11:06
Overall average time for all tasks combined 10:23 9:18

Table 1: Individual and average task completion times. Cells with an orange cell background indicate that the participant never
succeeded because they were stopped after approximately 20 minutes of trying. DNF implies the participant did not finish on
time.

In the post-study survey, 19 of 24 participants answered that
they preferred Copilot over Intellisense. Furthermore, 23 of 24 par-
ticipants answered that Copilot was more helpful than Intellisense.

We also asked participants to rate the helpfulness of code gen-
erated by both tools on a scale of 1 (not at all helpful) to 7 (very
helpful). Participants found code generated by Copilot more helpful
than code generated by Intellisense (6.16 vs. 4.45 on average). This
difference is statistically significant (student t-test: p < 0.001). How-
ever, only 10 participants self-reported that they felt more confident
about the code generated by Copilot than the code suggested by
IntelliSense.

4.2 Qualitative
4.2.1 User Perception. Participants found Copilot helpful as it pro-
vided a starting point for the task instead of a blank canvas they
usually have. Even if the code generated by Copilot is incorrect, it
always points them towards a direction they can get started from.
P1 said “Copilot’s function/line generation is a helpful reference; even
if the generated code is not correct, it can point me in the right direc-
tion for completing the task.” This is primarily useful for the kind of
tasks in which the user has no experience. P7 said, “the generation
of fully formed functions that completed a task that I wasn’t sure
how to approach/start was very cool.” For four of the participants,
Copilot auto-completed the code for almost the whole tasks, and
participants did very little to no fixes to the generated code. Though
we did not see any significant difference in task completion time,
seven participants explicitly mentioned that Copilot can save time
in completing the task compared to Intellisense. P4 said “[Copilot]
will likely save me much more time during the coding process.” Partic-
ipants also considered writing comments to guide Copilot as a way
of communicating with the AI. P24 said “Copilot behaves just like a
TA and can tell me exactly what I want by reading the comments.”

However, participants pointed out several concerns about adopt-
ing Copilot in practice. First, twelve participants said they found
it hard to understand and change the code generated by Copilot.
P1 said, “Copilot generated a complete function to fulfill the full task,
but part of the function did not work as desired. Because I did not
understand several parts of the function generated by Copilot, I did
not know how to debug the function. This caused me to get rid of the
whole function generated by copilot and start over.”. Due to a lack

of understanding, five participants perceived a loss of control over
their code. P13 said, “I would go with Intellisense for now since it
gives me more control over the code I am writing”. Second, seven
participants expressed concerns over code reliability. P7 said “At
this time I probably prefer Intellisense just because I trust my own
googling and understanding code examples online rather than opaque
suggestions from copilot.” P18 felt very frustrated after observing
Copilot continuously generate code with errors. They said, “Yes, I
got rid of the whole snippet as I didn’t want to conform to the code
generated by AI as it may have unwanted bugs.” Third, eight partici-
pants said they only trusted participants for simple tasks. This is
due to multiple reasons, e.g., the difficulty to understand generated
code, fear of unknown bugs, failure to match the coding style, etc.

4.2.2 User Interaction Patterns. While prior code completion tools
such as Intellisense only suggest one token at a time, Copilot is ca-
pable of generating even multiple lines of code at a time. While such
a code generation capability is often interpreted as a powerful fea-
ture, it causes significant cognitive overload in practice, especially
when the generated code has errors. A long piece of generated code
forces the user to switch back and forth between program reading
and writing. When the generated code has errors, the user needs
to further enter into the debugging mode. This constant context
switching puts significant mental demand on the users.

Another common interaction pattern is to use Copilot as a sub-
stitute for Internet search. P3 said, “for certain tasks that follow
very routine structures, and which I always have to look up on Stack
Overflow, a tool like Copilot eliminates a lot of the tedious searching
on Google”. However, we have to note that unlike code examples
from Stack Overflow, which are vetted by human programmers, the
code generated by Copilot may contain errors. P10 wrote, “I’m not
fully confident that Copilot will suggest the best solution. By reading
Stack Overflow, the helpful thing is that there will always be someone
who would just post a better solution, and people will discuss and
compare. I feel like that is missing from Copilot.” Since Copilot only
generates one solution at a time and does not provide any explana-
tions, programmers cannot compare multiple alternative solutions
and assess their quality as they often do in an online search.

Furthermore, we observed eight instances of over-reliance on
Copilot. For example, P8 simply accepted the generated code and
said, “I guess I will take its word.” This over-reliance also makes

Expectation vs. Experience: Evaluating the Usability of Code
Generation Tools Powered by Large Language Models CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA

participants defer code validation. P20 said “Not exactly sure what
this does. I’ll figure it out later”. Some participants later spot errors
in the accepted code. They had to go back and spend a lot of time
debugging the previous code.

4.2.3 Coping Strategies. There are two main ways participants
cope with incorrect code generated by Copilot. The first way is to
accept the incorrect suggestion and attempt to repair it. Twelve
participants attempted to repair the code when there was an error.
However, the participants always found it difficult to repair the
code since the code was not written by themselves. Of these twelve
participants open to repair the code, five participants were only
willing to repair the code if the code generated by Copilot is easy
to read and understand. P7 said, “it made debugging the code more
difficult as I hadn’t written the code directly and didn’t have an initial
intuition about where the bugs might be. Especially with a final bug
in my program I really had no idea why it was happening and had to
refactor the code.”

In cases where the participant is unable or unwilling to repair
the code, they will simply get rid of the entire generated code and
search for solutions online. Seven participants mentioned they will
rewrite the whole code by themselves without any attempt to repair
if there is an error in the code generated by Copilot. P13 said, “I
think getting rid of the whole code is easier than reading the code
and making the changes.” P1 also said, “because I did not understand
several parts of the function generated by Copilot, I did not know how
to debug the function. This caused me to get rid of the whole function
generated by Copilot and start over.”

4.2.4 Obstacles and Limitations. During the user study, we ob-
served three major obstacles to using Copilot in practice. First, par-
ticipants often failed to understand and assess the correctness of the
generated code. Since Copilot often generates a big chunk of code
at a time, participants found it hard to understand and debug the
code. This is already discussed in Section 4.2.1. The second obstacle
is the underestimation of the effort required to fix a bug in the code
generated by Copilot. Among the five task failures by participants
using Copilot, three were due to incorrect suggestions by Copilot.
While participants recognized these errors, they underestimated
how much effort it took to fix the bug and got stuck in a debugging
rabbit hole they could not get out of. For instance, for P20, Copilot
generated a regular expression based code for extracting URLs from
HTML. It is extremely hard to get the regular expression right for
this task and a better solution is to parse the HTML and extract
attributes instead. Since Copilot suggested the regular expression,
P20 decided to stick with it and overlooked the better solution. Yet
P20 failed to fix the regular expression after 20 minutes, leading to
a task failure. The third obstacle is the brittleness and ambiguity
of using comments (or prompts) as a specification for Copilot. As
discussed in the previous sections, participants used comments to
describe the desired code that should be generated by Copilot. How-
ever, Copilot is very sensitive to these comments. A little tweak in
a comment can cause Copilot to generate a significantly different
code snippet. P24 said, “it is ambiguous to use comments to hint at
Copilot what I want.”

5 DISCUSSION
The majority of participants (19 out of 24) expressed a strong prefer-
ence to use Copilot for their day-to-day programming tasks for sev-
eral reasons. In many cases, Copilot accurately generated the code
from the prompts provided by the participants. In four instances, it
even generated the correct code for almost the whole task in one
shot. Generating a whole block of code improves developer produc-
tivity significantly. However, we did not see a big difference in the
time saved by Copilot during the study. Our observations point to a
plausible explanation for this non-significance—though it is faster
to generate code through Copilot compared to acquiring code from
the internet, the code generated by Copilot can be buggy, leading
to more time spent in debugging. Whereas, code from the internet
is generally bug-free, comes with explanations and discussion, and
can be composed suitably for the current task by just doing some
minor edits like changing the variable names. Moreover, Copilot
also provides a useful starting point for the users to get started,
even if the generated code was incorrect. This is especially useful
for users who are stuck in a problem or who do not know how to
approach the task. Several participants request to see multiple code
suggestions so they can compare and compose code from different
snippets to suit their needs. Furthermore, we found participants
used Copilot as a replacement for internet search. However, they
missed out on comparing multiple sources and community discus-
sions. Hence, it is worthwhile integrating online search with code
generation to help users compare AI-generated code with online
code examples and identify the best possible solution for a task.
This can also prevent users from getting trapped in a debugging
rabbit hole whenever Copilot suggests an incorrect or inefficient
solution.

Another observation that is worth investigating is that partici-
pants had a hard time understanding the code generated by Copilot.
One way to help users understand the generated code is to provide
explanations using inline comments. We can highlight different
parts of the code based on model confidence similar to the ap-
proach suggested by [44]. We can also help users debug code by
automatically generating test cases and test data for users to val-
idate generated code and identify corner cases. We would like to
study this in-depth and come up with ways to make the code more
understandable and help users to debug and repair generated code.
Moreover, we observed that Copilot led to more task failures in
medium and hard tasks since it was hard for Copilot to generate
correct code in one shot. Three participants who finished the hard
task approached the problem by decomposing the complex task
into simpler sub-tasks and wrote prompts for each sub-task for
Copilot to solve. Such a task decomposition strategy led to higher
task-solving efficiency and a better user experience. Therefore, it
is worth working on interaction mechanisms that facilitate task
decomposition in the future.

6 CONCLUSION
This paper presents a user study with 24 participants on the us-
ability of GitHub Copilot, a groundbreaking code generation tool
empowered by an ultra-large language model. In particular, we
investigated users’ perception of Copilot, their interaction patterns,
and their coping strategies when the generated code is not correct.

CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA Priyan Vaithilingam, Tianyi Zhang, and Elena Glassman

We found that, despite all the promising results on benchmarks [8],
Copilot did not necessarily reduce the task completion time or in-
crease the success rate of solving programming tasks in a real-world
setting. On the other hand, participants overwhelmingly preferred
using Copilot in their programming workflow since Copilot often
provided a good starting point to approach the programming task.
Furthermore, our study shed light on several promising future di-
rections for improving the design of Copilot. For example, instead
of simply using Copilot as a one-shot code generation tool, there
should be more support for understanding and validating the gen-
erated code, exploring multiple solutions, and task decomposition.

ACKNOWLEDGMENTS
This material is based upon work supported by the NSF under Grant
No. IIS-2107391 and Grant No. CCF-2123965.

REFERENCES
[1] Uri Alon, Roy Sadaka, Omer Levy, and Eran Yahav. 2020. Structural Language

Models of Code. In Proceedings of the 37th International Conference on Machine
Learning (Proceedings of Machine Learning Research, Vol. 119), Hal Daumé III and
Aarti Singh (Eds.). PMLR, 245–256. https://proceedings.mlr.press/v119/alon20a.
html

[2] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund
Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama, Emina
Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. IEEE.

[3] Stavros Antifakos, Nicky Kern, Bernt Schiele, and Adrian Schwaninger. 2005.
Towards Improving Trust in Context-Aware Systems by Displaying System Con-
fidence (MobileHCI ’05). Association for Computing Machinery, New York, NY,
USA, 9–14. https://doi.org/10.1145/1085777.1085780

[4] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program Synthesis with Large Language Models. ArXiv
abs/2108.07732 (2021).

[5] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin,
and Daniel Tarlow. 2017. DeepCoder: Learning to Write Programs. ArXiv
abs/1611.01989 (2017).

[6] Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. 2021. GPT-
Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow. https:
//doi.org/10.5281/zenodo.5297715 If you use this software, please cite it using
these metadata..

[7] Sarah E Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scrap-
ing distributed hierarchical web data. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology. 963–975.

[8] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[9] Matteo Ciniselli, Nathan Cooper, Luca Pascarella, Denys Poshyvanyk, Massimil-
iano Di Penta, and Gabriele Bavota. 2021. An Empirical Study on the Usage of
BERT Models for Code Completion. arXiv preprint arXiv:2103.07115 (2021).

[10] Allen Cypher. 1995. Eager: Programming repetitive tasks by example. In Readings
in human–computer interaction. Elsevier, 804–810.

[11] Mary T Dzindolet, Scott A Peterson, Regina A Pomranky, Linda G Pierce, and
Hall P Beck. 2003. The role of trust in automation reliance. International journal
of human-computer studies 58, 6 (2003), 697–718.

[12] John K Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing data structure
transformations from input-output examples. ACM SIGPLAN Notices 50, 6 (2015),
229–239.

[13] Github Copilot [n. d.]. Your AI pair programmer.
[14] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-

output examples. ACM Sigplan Notices 46, 1 (2011), 317–330.
[15] Sumit Gulwani, José Hernández-Orallo, Emanuel Kitzelmann, Stephen H Mug-

gleton, Ute Schmid, and Benjamin Zorn. 2015. Inductive programming meets the
real world. Commun. ACM 58, 11 (2015), 90–99.

[16] Tong Guo and Huilin Gao. 2019. Content enhanced bert-based text-to-sql gener-
ation. arXiv preprint arXiv:1910.07179 (2019).

[17] Shirley Anugrah Hayati, Raphael Olivier, Pravalika Avvaru, Pengcheng Yin, An-
thony Tomasic, andGrahamNeubig. 2018. Retrieval-based neural code generation.
arXiv preprint arXiv:1808.10025 (2018).

[18] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. Codesearchnet challenge: Evaluating the state of semantic

code search. arXiv preprint arXiv:1909.09436 (2019).
[19] Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. 2010. Oracle-

guided component-based program synthesis. In 2010 ACM/IEEE 32nd International
Conference on Software Engineering, Vol. 1. IEEE, 215–224.

[20] Rafael-Michael Karampatsis and Charles Sutton. 2019. Maybe deep neu-
ral networks are the best choice for modeling source code. arXiv preprint
arXiv:1903.05734 (2019).

[21] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. 2021. Code pre-
diction by feeding trees to transformers. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 150–162.

[22] Kite - Free AI Coding Assistant and Code Auto-Complete Plugin 2020. Kite - Free
AI Coding Assistant and Code Auto-Complete Plugin. https://www.kite.com/.
Accessed: 2022-1-8.

[23] Rafal Kocielnik, Saleema Amershi, and Paul N Bennett. 2019. Will you accept an
imperfect ai? exploring designs for adjusting end-user expectations of ai systems.
In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
1–14.

[24] Tessa Lau, Steven A Wolfman, Pedro Domingos, and Daniel S Weld. 2003. Pro-
gramming by demonstration using version space algebra. Machine Learning 53,
1 (2003), 111–156.

[25] Vu Le and Sumit Gulwani. 2014. Flashextract: A framework for data extraction by
examples. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 542–553.

[26] Brian Y Lim and Anind K Dey. 2009. Assessing demand for intelligibility in
context-aware applications. In Proceedings of the 11th international conference on
Ubiquitous computing. 195–204.

[27] Brian Y Lim and Anind K Dey. 2010. Toolkit to support intelligibility in context-
aware applications. In Proceedings of the 12th ACM international conference on
Ubiquitous computing. 13–22.

[28] Brian Y Lim, Anind K Dey, and Daniel Avrahami. 2009. Why and why not
explanations improve the intelligibility of context-aware intelligent systems.
In Proceedings of the SIGCHI conference on human factors in computing systems.
2119–2128.

[29] Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David Nader Palacio,
Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. 2021. Studying the
usage of text-to-text transfer transformer to support code-related tasks. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
336–347.

[30] Brad A Myers. 1990. Creating user interfaces using programming by exam-
ple, visual programming, and constraints. ACM Transactions on Programming
Languages and Systems (TOPLAS) 12, 2 (1990), 143–177.

[31] Brad A Myers. 1991. Graphical techniques in a spreadsheet for specifying user
interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. 243–249.

[32] OpenAI and Ashley Pilipiszyn. 2021. GPT-3 Powers the Next Generation of Apps.
https://openai.com/blog/gpt-3-apps/. Accessed: 2022-1-8.

[33] Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Brendan
Dolan-Gavitt. 2021. Can OpenAI Codex and Other Large Language Models Help
Us Fix Security Bugs? arXiv preprint arXiv:2112.02125 (2021).

[34] Hila Peleg, Sharon Shoham, and Eran Yahav. 2018. Programming not only by
example. In 2018 IEEE/ACM 40th International Conference on Software Engineering
(ICSE). IEEE, 1114–1124.

[35] Paul Robinette,Wenchen Li, Robert Allen, AyannaMHoward, and Alan RWagner.
2016. Overtrust of robots in emergency evacuation scenarios. In 2016 11th
ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 101–
108.

[36] Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodík, and Kemal Ebcioğlu.
2005. Programming by sketching for bit-streaming programs. In Proceedings of
the 2005 ACM SIGPLAN conference on Programming language design and imple-
mentation. 281–294.

[37] Simone Stumpf, Vidya Rajaram, Lida Li, Weng-Keen Wong, Margaret Burnett,
Thomas Dietterich, Erin Sullivan, and Jonathan Herlocker. 2009. Interacting
meaningfully with machine learning systems: Three experiments. International
journal of human-computer studies 67, 8 (2009), 639–662.

[38] Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili Mou, and Lu Zhang. 2020.
Treegen: A tree-based transformer architecture for code generation. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, Vol. 34. 8984–8991.

[39] Tabnine [n. d.]. Code Faster with AI Code Completions. https://www.tabnine.
com/. Accessed: 2022-1-8.

[40] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2019. An empirical study on learning bug-fixing
patches in the wild via neural machine translation. ACM Transactions on Software
Engineering and Methodology (TOSEM) 28, 4 (2019), 1–29.

[41] Richard J Waldinger and Richard CT Lee. 1969. PROW: A step toward automatic
programwriting. In Proceedings of the 1st international joint conference on Artificial
intelligence. 241–252.

[42] Ben Wang. 2021. Mesh-Transformer-JAX: Model-Parallel Implementation of
Transformer Language Model with JAX. https://github.com/kingoflolz/mesh-

Expectation vs. Experience: Evaluating the Usability of Code
Generation Tools Powered by Large Language Models CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA

transformer-jax.
[43] Chenglong Wang, Yu Feng, Rastislav Bodik, Alvin Cheung, and Isil Dillig. 2019.

Visualization by example. Proceedings of the ACM on Programming Languages 4,
POPL (2019), 1–28.

[44] Justin D Weisz, Michael Muller, Stephanie Houde, John Richards, Steven I Ross,
Fernando Martinez, Mayank Agarwal, and Kartik Talamadupula. 2021. Perfection
Not Required? Human-AI Partnerships in Code Translation. In 26th International
Conference on Intelligent User Interfaces. 402–412.

[45] Daniel S Weld and Gagan Bansal. 2018. Intelligible artificial intelligence. ArXiv
e-prints, March 2018 (2018).

[46] Frank F Xu, Zhengbao Jiang, Pengcheng Yin, Bogdan Vasilescu, and Graham
Neubig. 2020. Incorporating external knowledge through pre-training for natural
language to code generation. arXiv preprint arXiv:2004.09015 (2020).

[47] Frank F Xu, Bogdan Vasilescu, and GrahamNeubig. 2021. In-IDE Code Generation
from Natural Language: Promise and Challenges. arXiv preprint arXiv:2101.11149

(2021).
[48] Pengcheng Yin and Graham Neubig. 2017. A syntactic neural model for general-

purpose code generation. arXiv preprint arXiv:1704.01696 (2017).
[49] Pengcheng Yin and Graham Neubig. 2018. TRANX: A transition-based neural

abstract syntax parser for semantic parsing and code generation. arXiv preprint
arXiv:1810.02720 (2018).

[50] Wojciech Zaremba, Greg Brockman, and OpenAI. 2021. OpenAI Codex. https:
//openai.com/blog/openai-codex/. Accessed: 2022-1-8.

[51] Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L Glassman. 2020.
Interactive Program Synthesis by Augmented Examples. In Proceedings of the
33rd Annual ACM Symposium on User Interface Software and Technology. 627–648.

[52] Yunfeng Zhang, Q Vera Liao, and Rachel KE Bellamy. 2020. Effect of confidence
and explanation on accuracy and trust calibration in AI-assisted decision making.
In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency.
295–305.

