
Bluetooth® Core 5.1
Feature Overview

Bluetooth® Core Specification v5.1 (Bluetooth® Core 5.1) contains
a series of updates to the Bluetooth® Core Specification. This
document summarizes and explains each change.

Bluetooth® Core 5.1 should be consulted for full details.

Author: Martin Woolley

Version: 1.0.2

Revision Date: 13 January 2025

2

Revision History

Version Date Author Changes

1.0.0 28 January 2019 Martin Woolley Initial Version

1.0.1 9 December 2020 Martin Woolley Language Changes

1.0.2 13 January 2025 Avi Negrin Language Changes

Table of
Contents
1.0	 Direction Finding . 4

	 1.1	 Overview	 4

	 1.2	 Technical Details	 5

2.0	 GATT Caching Enhancements. 6

	 2.1	 Background	 6

	 2.2	 Improved Caching Strategy	 7

	 2.3	 Better State Management	 8

3.0	 Advertising Enhancement 1: Randomized Advertising
	 Channel Indexing. 9

	 3.1	 Background	 9

	 3.2	 Improved Packet Collision Avoidance	 9

4.0 	 Advertising Enhancement 2: Periodic Advertising
	 Sync Transfer. 10

	 4.1	 Background	 10

	 4.2	 The Power of Two	 10

5.0 	 Minor Enhancements. 11

	 5.1	 HCI Support for Debug Keys in LE
		 Secure Connections	 11

	 5.2	 Sleep Clock Accuracy Update Mechanism	 11

	 5.3	 ADI Field in Scan Response Data	 11

	 5.4	 Interaction Between QoS and Flow Specification	 11

	 5.5	 Host Channel Classification for
		 Secondary Advertising	 12

	 5.6	 Allow the SID to Appear in Scan Response Reports	 12

	 5.7	 Specify the behavior when rules are violated	 12

4

1.0 Direction Finding

Overview

Bluetooth® Core 5.1 proximity solutions and positioning systems currently use signal strength to
estimate distance. A new direction finding feature in Bluetooth® Core Specification v5.1 (Bluetooth®
Core 5.1) makes it possible for Bluetooth devices to determine the direction of a Bluetooth
signal transmission.

This new feature offers two different methods for determining the angle that a Bluetooth signal is
being transmitted from with a high degree of accuracy. The two methods are called Angle of Arrival
(AoA) and Angle of Departure (AoD).

Each of the techniques requires one of the two communicating devices to have an array of multiple
antennae, with the antenna array included in the receiving device when the AoA method is used and
in the transmitting device when using AoD.

AoA Method AoD Method

AoA AoD

Transmitter Receiver

Receiver Transmitter

Bluetooth® Core 5.1 gives the Bluetooth Low Energy (LE) controller in the receiving device the ability
to generate data that can then be used to calculate the directional angle to the transmitting device.

The addition of direction finding in this release of the Bluetooth® Core Specification is the first of
several steps in the Bluetooth roadmap that will ultimately enable key enhancements to Bluetooth
location services. When the associated profiles have been released, Bluetooth developers will be
able to exploit the new direction finding controller capability to create high accuracy, interoperable
positioning systems such as real-time locating systems (RTLS) and indoor positioning systems (IPS).

back to contents

Figure 1 - Angle of Arrival (AoA) and Angle of Departure (AoD)

The new direction finding feature also has the potential to enhance Bluetooth proximity solutions by
determining device direction, particularly in directional item finding and point of interest
information solutions.

Technical Details
The Bluetooth direction finding feature uses In-Phase and Quadrature (IQ) sampling to measure the
phase of radio waves incident upon an antenna at a specific time. In the AoA approach, the sampling
process is applied to each antenna in the array, one at a time, and in some suitable sequence
depending on the design of the array.

Sampled data is passed up the stack via the Host Controller Interface (HCI) where it will then be
possible to apply a suitable algorithm to the sampled data to calculate the direction of one device
from the other. Algorithms for calculating angles from IQ samples are not defined in this Bluetooth®
Core Specification release. Once associated profiles are available, application developers will have
the opportunity to implement algorithms suitable for the intended use case.

To support IQ sampling and the use of IQ samples by higher layers in the stack, the link layer (LL) and
HCI have each changed.

At the link layer, a new field called the Constant Tone Extension (CTE) has been defined (see Figure
2). The purpose of the CTE field is to provide constant frequency and wavelength signal material
against which IQ sampling can be performed. This field contains a sequence of 1s, is not subject to
the usual whitening process and is not included in the CRC calculation.

Preamble
(1 or 2 octets)

Access-Address
(4 octets)

PDU
(2-258 octets)

CRC
(3 octets)

Constant
Tone Extension
(16 to 160 μs)

LSB MSB

CTE can be used in both connectionless and connection-oriented scenarios. For connectionless use,
the periodic advertising feature is required (since deterministic timing in the sampling process is
important) and CTE is appended to AUX_SYNC_IND PDUs. For connection-oriented use, new PDUs
LL_CTE_REQ and LL_CTE_RSP have been defined. In either case, there are new HCI PDUs that allow
the configuration of various aspects of CTE PDUs, such as the CTE length, length of the antenna
switching pattern, and antenna IDs.

5

back to contents

Figure 2 - Constant Tone Extension

6

2.0 GATT Caching Enhancements

Background

All Bluetooth® Low Energy connected devices use the Generic Attribute Profile (GATT). As such, the
subject of GATT caching is of relevance to a wide range of device types.

GATT devices contain a database known as the attribute table. The attribute table contains GATT
service, characteristic, and descriptor structural details and values, and is central to how GATT-based
Bluetooth Low Energy devices work. Entries in the attribute table are identified by attribute handles.

GATT clients must perform a procedure known as service discovery to acquire details of the attribute
table on the remote GATT server device that the client has connected to. The client can then use
these details, including the identifying attribute handles in subsequent Attribute Protocol (ATT)
interactions with the server.

Client Server

Attribute

Cache

Attribute

Table

Services

Characteristics

Descriptors

Services

Characteristics

Descriptors

ATT Requests

ATT Responses

Some devices do not
change their attribute table
structure throughout their
life. The GATT services,
characteristics, and
descriptors present in the
table will always be the
same, and only values of
characteristics or descriptors
will change. Other devices
do change their attribute
table from time to time.

Service discovery takes time and consumes energy. Therefore, Bluetooth® Core 5.1 defines an
attribute caching strategy aimed at allowing clients to skip service discovery when nothing has
changed.

Previously, caching and client/server attribute table synchronization was controlled solely using the
Service Changed characteristic that might be present in the Generic Attribute Service. The GATT
server could inform a connected client that its attribute table had changed by sending an ATT
indication to the client. The client replied with an ATT confirmation and performed service discovery
to synchronize its attribute cache with that of the server.

To avoid the GATT server needing to keep track of every client that ever connected to it, and whether
or not each client had been informed of the latest attribute table change, previously the Bluetooth®

back to contents

Figure 3 - Service Discovery and Attribute Caching

7

Core Specification stipulated that clients and servers that have no trusted relationship (i.e. are not
bonded) were required to perform service discovery every time they connect. This rule can cause
energy efficiency and user experience issues for some types of products.

In addition, beyond making a single attempt to inform the client that the attribute table had changed
using the ATT Service Changed indication, there was no further state management carried out
with respect to the client’s view of the attribute table vs the server’s. The approach allowed a race
condition in the communication between client and server, with respect to attribute table changes
and general ATT interactions to exist, whereby it was possible for a client to time-out whilst waiting
for a Service Changed indication after connecting to the server, proceed to send general ATT PDUs,
and then receive a Service Changed indication.

Improved Caching Strategy

This release makes changes to how attribute caching and cache synchronization is approached by
GATT clients and servers. It offers significant user-experience and energy-efficiency improvements
by allowing clients without a trusted relationship with a server to retain their attribute cache across
connections and resolves the race condition issue described above.

Two new characteristics, each a member of the Generic Attribute Service, have been introduced:
Database Hash and Client Supported Features. Clients which do not have a trusted relationship
with the server may now cache the attribute table across connections if the client supports the
new Database Hash characteristic, as indicated by the client updating a flag in the server’s Client
Supported Features characteristic.

The Database Hash characteristic allows the client to ask the server if anything has changed, rather
than relying on the server telling it using a Service Changed indication. The server is responsible for
maintaining the value of the Database Hash characteristic, which is a hash value, calculated from
pertinent aspects of the attribute table. The client reads its value immediately after establishing a
connection. The client may cache the Database Hash value and subsequently use it to determine
whether or not the remote attribute table has changed. If it has changed, the client performs service
discovery again. If it has not, it does not need to. This offers a major user-experience and energy-
efficiency benefit to some device types.

Furthermore, a client may now deduce that a device it is connecting to is the same type of device as
one previously connected to and whose attribute table has already been cached by the client. If the
database hash from the connected device is the same as the one associated with the client’s attribute
cache, and other details such as the device manufacturer are the same, the client may conclude that
there is no need to perform service discovery for the connected device since the attribute cache
obtained from another device contains equivalent data already.

For some applications, this change has considerable value. For example, consider Bluetooth smart
locks, where a smartphone or other client device interacts with doors in a building to authenticate
and open the door for a user when they approach. Service discovery need only be performed the
first time the user attempts to pass through a door with a smart lock. The user may perceive a delay

back to contents

8

in the door unlocking during this first occasion, but all subsequent times the user approaches any
of the doors in building service discovery will not be required, and the user will experience a near
instantaneous response from the smart lock.

Better State Management

A state machine defines whether or not the client view of the attribute table and the server view of its
attribute table are in sync and, as such, whether or not the client needs to perform service discovery.
The revised specification for attribute caching introduces the rigorously defined concept of Robust
Caching that formalizes this state machine and introduces mechanisms for using it.

Clients are said to be in the change-aware state or are change-unaware. The specification lays out
the precise rules for transitioning to the appropriate state and how to behave when in each of the two
states.

Of particular note is the new «Database Out Of Sync» ATT error response that the server may return
if it believes the client attribute table cache is out of sync with the server’s. The server will ignore all
ATT commands received from the client while it is in the change-unaware state. A number of events
can transition the client’s state to change-aware, including the server receiving an ATT confirmation
to a Service Changed indication it had previously sent or the server having notified the client using
the <<Database Out Of Sync>> error and subsequently receiving some other ATT PDU from the client.
From the client’s point of view, if it moves to the change-unaware state it will not use its attribute
cache, regarding it as invalid. It will continue to be treated as invalid until the client’s attribute cache
and the servers are in sync once again.

back to contents

9

3.0 Advertising Enhancement 1: Randomized Advertising
Channel Indexing

Background

In Bluetooth Core Specification v5.0 (Bluetooth® Core 5.0), advertising events are defined as “one or
more advertising PDUs sent on the primary advertising channel beginning with the first used advertising
channel index and ending with the last used advertising channel index”.

In practice, this means that when all three channels are in use, as is often the case, advertising uses
channels in the sequence 37 then 38 then 39, in strict order.

To lessen the possibility of persistent packet collisions, where two or more devices advertise on the
same channel in an overlapping time period, Bluetooth® Core 5.0 stipulates that the time between
consecutive advertising events must include a random delay of between 0 and 10ms.

ADV_IND ADV_IND ADV_IND

Advertising
event started

Advertising
event closed

ADV_IND ADV_IND ADV_IND

Advertising
event started

Advertising
event closed

ADV_IND ADV_IND ADV_IND

Advertising
event started

Advertising
event closed

Adv_idx = Adv_idx = Adv_idx =

3937 38
Adv_idx = Adv_idx = Adv_idx =

3937 38
Adv_idx = Adv_idx = Adv_idx =

3937 38

Improved Packet Collision Avoidance

In this release, devices in the advertising state are no longer required to select advertising channels
in a strict and unchanging sequence, starting with the lowest used channel index and ending with the
highest. It is now permissible to select channel indices at random. The randomization of advertising
channel indices further reduces the potential for advertising packet collisions occurring.

Applications that use advertising to perform connectionless communication will benefit from
improved scalability and reliability in busy radio environments by implementing this change to
advertising channel index selection.

ADV_IND

Adv_idx =

ADV_IND

Adv_idx =

ADV_IND

Adv_idx =

Advertising
event started

Advertising
event closed

ADV_IND

Adv_idx =

ADV_IND

Adv_idx =

ADV_IND

Adv_idx =

Advertising
event started

Advertising
event closed

ADV_IND

Adv_idx =

ADV_IND

Adv_idx =

ADV_IND

Adv_idx =

Advertising
event started

Advertising
event closed

39 39 3937 37 3738 38 38

back to contents

Figure 4 - Advertising channel use per the Bluetooth® Core 5.0 with the fixed sequence of 37, 38 then 39

Figure 5 - Advertising channel use per the Bluetooth® Core 5.1 with a randomized channel index sequence

10

4.0 Advertising Enhancement 2: Periodic Advertising Sync Transfer

Background

Bluetooth® Core 5.0 introduced periodic advertising that uses deterministic scheduling of advertising
events and provides a procedure that devices can use to synchronize their scanning with the
advertising schedule of another device. Synchronization of the timing of scanning and advertising can
make the scanning device more energy efficient and can make possible some use cases that require
precise timing in the exchange of data.

To allow synchronization with the periodic advertising of a remote device, the remote device
advertises AUX_ADV_IND PDUs which contain a field called SyncInfo. SyncInfo contains everything
the receiving device needs to know to synchronize with the periodic advertising of AUX_SYNC_IND
PDUs performed by the remote device from that point on. This periodic advertising synchronization
procedure can be a relatively expensive operation, however.

The Power of Two

Some device types, with limited power, may not be able to afford the energy cost associated with the
periodic advertising synchronization procedure or may have limitations in duty cycle or scan time that
prevent it from working.

The new Periodic Advertising Sync
Transfer (PAST) feature allows
another, less constrained device
to perform the synchronization
procedure and then pass the
acquired synchronization details
over a point-to-point Bluetooth Low
Energy connection to the other,
constrained device. For example,
a smartphone could scan for AUX_
SYNC_IND packets from a TV and
then pass them over a connection
to an associated smart watch so
that the watch can then benefit
from using periodic advertising and
scanning to acquire data from
the TV.

back to contents

Television
(Advertising)

Smart Phone
(Scanning)

Smart Watch
(Paired with Smart Phone)

Sync Details

AUX_ADV_IND

Figure 6 - Periodic Advertising Sync Transfer
usage example

11

5.0 Minor Enhancements
A number of minor enhancements are included in this release of the Bluetooth® Core Specification.

HCI Support for Debug Keys in LE Secure Connections
Enhancement

LE Secure Connections is a Bluetooth pairing procedure that uses the Diffie Hellman key agreement
protocol to secure the exchange of shared security keys during pairing. Diffie Hellman uses
asymmetric, elliptic curve cryptography with a public and a private key. This makes it impossible to
obtain the shared keys and use them for tracing and debugging connections during developing and
testing.

In Bluetooth® Core Specification v4.2, hard-coded key values for testing purposes were defined. But
in cases where the Elliptic Curve algorithms are implemented in the controller, there was no way for
the host to indicate it wanted to use them. The latest version of the Bluetooth® Core Specification
adds an HCI command that lets the host tell the controller to use the debug key values. Cases where
the host implements the Elliptic Curve algorithms itself are not affected by this change.

Sleep Clock Accuracy Update Mechanism
Enhancement

Currently, when establishing an LE connection, the Central device informs the Peripheral how
accurate its clock is using the Sleep Clock Accuracy (SCA) field. But the accuracy requirement might
change depending on the concurrent use cases handled by the controller. For example, it might
start at one value but need to be stepped up when another connection with higher clock-accuracy
requirements is established.

Bluetooth® Core 5.1 provides a new link layer PDU, LL_CLOCK_ACCURACY_REQ, that can be used
to inform connected Peripherals of new clock accuracy values. This PDU may be transmitted either
by the Central to the Peripheral or by the Peripheral to the Central so that Peripherals may use it to
inform Centrals in a connection of their clock accuracy.

This feature may result in lower power consumption in some cases.

ADI Field in Scan Response Data
Error Correction

The AdvDataInfo (ADI) field is used in extended advertising packets. Previously, this field was not
allowed in scan response packets. In the latest Bluetooth® Core Specification release it has become
permissible to include ADI in scan response packets.

Interaction Between QoS and Flow Specification
Informative

This change is a clarification of the rules relating to Quality of Service (QoS) and Flow as they relate
to Bluetooth Basic Rate/Enhanced Data Rate (BR/EDR).

back to contents

12

Host Channel Classification for Secondary Advertising
Error Correction

The HCI command LE_Set_Host_Channel_Classification allows the classification of radio channels
as “bad”. Previously its use applied only to connections, but now it applies to secondary advertising
channels too.

Allow the SID to Appear in Scan Response Reports
Error Correction

The Advertising Set ID (SID) field is used in extended advertising packets. Previously this field was not
allowed in scan response packets. In Bluetooth® Core 5.1 it has become permissible to include SID in
scan response reports.

Specify the behavior when rules are violated
Informative

A new section, “Responding to Invalid behavior” has been added to the latest Bluetooth® Core
Specification release to clarify the rules which can be followed when dealing with a badly behaved
Bluetooth device.

back to contents

